An integrated approach to panel width, fleet size, and change-out time optimization in room-and-pillar mines
No Thumbnail Available
Date
2022
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Optimization of panels, haulage fleet, and waiting area involves deterministic and low-fidelity methods and experiential knowledge. The process is challenging because coal recovery and operational capabilities must be considered in the solution. The approach in this manuscript comprises the development of an integrated stochastic simulation model of a coal room-and-pillar system that addresses these challenges. The decision variables evaluated are panel width, number of shuttle cars, and change-out time (COT). The results show that the mine should implement the shortest possible COT, decreasing the cycle time and thereby increasing productivity and continuous miner (CM) utilization. The highest productivity and CM utilization for a fleet size of three shuttle cars is found in the 15-entry panel width. For the evaluated fleet sizes, the 19-entry panel width is optimal for the four and five shuttle cars. Among the three variables studied, panel width and fleet size had the most significant effects (5% increase) on the CM productivity, cycle time, and utilization.
Description
Keywords
Discrete event simulation, panel width, room-and-pillar, fleet size, productivity, change-out time