Fast and slow decay solutions for supercritical elliptic problems in exterior domains
dc.contributor.author | Davila, Juan | |
dc.contributor.author | del Pino, Manuel | |
dc.contributor.author | Musso, Monica | |
dc.contributor.author | Wei, Juncheng | |
dc.date.accessioned | 2025-01-21T01:05:01Z | |
dc.date.available | 2025-01-21T01:05:01Z | |
dc.date.issued | 2008 | |
dc.description.abstract | We consider the elliptic problem Delta u + u(p) = 0, u > 0 in an exterior domain, Omega = R(N)\D under zero Dirichlet and vanishing conditions, where D is smooth and bounded in R(N), N >= 3, and p is supercritical, namely p > N+2/N-2. We prove that this problem has infinitely many solutions with slow decay O(vertical bar x vertical bar(-2/p-1)) at infinity. In addition, a solution with fast decay O(vertical bar x vertical bar(2- N)) exists if p is close enough from above to the critical exponent. | |
dc.fuente.origen | WOS | |
dc.identifier.doi | 10.1007/s00526-007-0154-1 | |
dc.identifier.issn | 0944-2669 | |
dc.identifier.uri | https://doi.org/10.1007/s00526-007-0154-1 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/95785 | |
dc.identifier.wosid | WOS:000255855400003 | |
dc.issue.numero | 4 | |
dc.language.iso | en | |
dc.pagina.final | 480 | |
dc.pagina.inicio | 453 | |
dc.revista | Calculus of variations and partial differential equations | |
dc.rights | acceso restringido | |
dc.title | Fast and slow decay solutions for supercritical elliptic problems in exterior domains | |
dc.type | artículo | |
dc.volumen | 32 | |
sipa.index | WOS | |
sipa.trazabilidad | WOS;2025-01-12 |