Fast and slow decay solutions for supercritical elliptic problems in exterior domains

dc.contributor.authorDavila, Juan
dc.contributor.authordel Pino, Manuel
dc.contributor.authorMusso, Monica
dc.contributor.authorWei, Juncheng
dc.date.accessioned2025-01-21T01:05:01Z
dc.date.available2025-01-21T01:05:01Z
dc.date.issued2008
dc.description.abstractWe consider the elliptic problem Delta u + u(p) = 0, u > 0 in an exterior domain, Omega = R(N)\D under zero Dirichlet and vanishing conditions, where D is smooth and bounded in R(N), N >= 3, and p is supercritical, namely p > N+2/N-2. We prove that this problem has infinitely many solutions with slow decay O(vertical bar x vertical bar(-2/p-1)) at infinity. In addition, a solution with fast decay O(vertical bar x vertical bar(2- N)) exists if p is close enough from above to the critical exponent.
dc.fuente.origenWOS
dc.identifier.doi10.1007/s00526-007-0154-1
dc.identifier.issn0944-2669
dc.identifier.urihttps://doi.org/10.1007/s00526-007-0154-1
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/95785
dc.identifier.wosidWOS:000255855400003
dc.issue.numero4
dc.language.isoen
dc.pagina.final480
dc.pagina.inicio453
dc.revistaCalculus of variations and partial differential equations
dc.rightsacceso restringido
dc.titleFast and slow decay solutions for supercritical elliptic problems in exterior domains
dc.typeartículo
dc.volumen32
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files