Fast and slow decay solutions for supercritical elliptic problems in exterior domains

No Thumbnail Available
Date
2008
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
We consider the elliptic problem Delta u + u(p) = 0, u > 0 in an exterior domain, Omega = R(N)\D under zero Dirichlet and vanishing conditions, where D is smooth and bounded in R(N), N >= 3, and p is supercritical, namely p > N+2/N-2. We prove that this problem has infinitely many solutions with slow decay O(vertical bar x vertical bar(-2/p-1)) at infinity. In addition, a solution with fast decay O(vertical bar x vertical bar(2- N)) exists if p is close enough from above to the critical exponent.
Description
Keywords
Citation