• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Karkulik, Michael"

Now showing 1 - 20 of 26
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    A ROBUST DPG METHOD FOR SINGULARLY PERTURBED REACTION-DIFFUSION PROBLEMS
    (2017) Heuer, Norbert; Karkulik, Michael
    We present and analyze a discontinuous Petrov-Galerkin method with optimal test functions for a reaction-dominated diffusion problem in two and three space dimensions. We start with an ultraweak formulation that comprises parameters alpha, beta to allow for general epsilon-dependent weightings of three field variables (epsilon being the small diffusion parameter). Specific values of alpha and beta imply robustness of the method, that is, a quasi-optimal error estimate with a constant that is independent of epsilon. Moreover, these values lead to a norm for the field variables that is known to be balanced in epsilon for model problems with typical boundary layers. Several numerical examples underline our theoretical estimates and reveal stability of approximations even for very small epsilon.
  • Loading...
    Thumbnail Image
    Item
    Adaptive Boundary Element Methods A Posteriori Error Estimators, Adaptivity, Convergence, and Implementation
    (2015) Feischl, M.; Führer, Thomas; Heuer, Norbert; Karkulik, Michael; Praetorius, D.
  • Loading...
    Thumbnail Image
    Item
    Adaptive Crouzeix-Raviart boundary element method
    (2015) Heuer, Norbert; Karkulik, Michael
  • Loading...
    Thumbnail Image
    Item
    Analysis of Backward Euler Primal DPG Methods
    (2021) Führer, Thomas; Heuer, Norbert; Karkulik, Michael
    We analyze backward Euler time stepping schemes for a primal DPG formulation of a class of parabolic problems. Optimal error estimates are shown in a natural norm and in the L-2 norm of the field variable. For the heat equation the solution of our primal DPG formulation equals the solution of a standard Galerkin scheme and, thus, optimal error bounds are found in the literature. In the presence of advection and reaction terms, however, the latter identity is not valid anymore and the analysis of optimal error bounds requires to resort to elliptic projection operators. It is essential that these operators be projections with respect to the spatial part of the PDE, as in standard Galerkin schemes, and not with respect to the full PDE at a time step, as done previously.
  • Loading...
    Thumbnail Image
    Item
    Combining the DPG Method with Finite Elements
    (2018) Fuehrer, Thomas; Heuer, Norbert; Karkulik, Michael; Rodriguez, Rodolfo
  • Loading...
    Thumbnail Image
    Item
    Convergence of Adaptive 3D BEM for Weakly Singular Integral Equations Based on Isotropic Mesh-Refinement
    (2013) Karkulik, Michael; Of, Günther; Praetorius, Dirk
  • Loading...
    Thumbnail Image
    Item
    Discontinuous Petrov-Galerkin boundary elements
    (2017) Heuer, Norbert; Karkulik, Michael
  • Loading...
    Thumbnail Image
    Item
    DPG Method with Optimal Test Functions for a Fractional Advection Diffusion Equation
    (2017) Ervin, V.; Führer, Thomas; Heuer, Norbert; Karkulik, Michael
  • Loading...
    Thumbnail Image
    Item
    DPG method with optimal test functions for a transmission problem
    (2015) Heuer, Norbert; Karkulik, Michael
  • Loading...
    Thumbnail Image
    Item
    Efficiency and optimality of some weighted-residual error estimator for adaptive 2D boundary element methods
    (2013) Aurada, M.; Feischl, M.; Führer, T.; Karkulik, Michael; Praetorius, D.
    We prove convergence and quasi-optimality of a lowest-order adaptive boundary element method for a weakly-singular integral equation in 2D. The adaptive mesh-refinement is driven by the weighted-residual error estimator. By proving that this estimator is not only reliable, but under some regularity assumptions on the given data also efficient on locally refined meshes, we characterize the approximation class in terms of the Galerkin error only. In particular, this yields that no adaptive strategy can do better, and the weighted-residual error estimator is thus an optimal choice to steer the adaptive mesh-refinement. As a side result, we prove a weak form of the saturation assumption.
  • Loading...
    Thumbnail Image
    Item
    Energy norm based error estimators for adaptive BEM for hypersingular integral equations
    (2015) Aurada, Markus; Feischl, Michael; Füehrer, Thomas; Karkulik, Michael; Praetorius, Dirk
  • Loading...
    Thumbnail Image
    Item
    HILBERT - a MATLAB implementation of adaptive 2D-BEM
    (2014) Aurada, Markus; Ebner, Michael; Feischl, Michael; Ferraz-Leite, Samuel; Führer, Thomas; Goldenits, Petra; Karkulik, Michael; Mayr, Markus; Praetorius, Dirk
  • Loading...
    Thumbnail Image
    Item
    Local high-order regularization and applications to hp-methods
    (2015) Karkulik, Michael; Melenk, J.
  • Loading...
    Thumbnail Image
    Item
    LOCAL INVERSE ESTIMATES FOR NON-LOCAL BOUNDARY INTEGRAL OPERATORS
    (2017) Aurada, M.; Feischl, M.; Karkulik, Michael; Melenk, J.; Praetorius, D.; Führer, Thomas
  • Loading...
    Thumbnail Image
    Item
    MINRES for Second-Order PDEs with Singular Data
    (2022) Führer Thomas; Heuer, Norbert; Karkulik, Michael
    Minimum residual methods such as the least-squares finite element method (FEM) or the discontinuous Petrov-Galerkin (DPG) method with optimal test functions usually exclude singular data, e.g., non-square-integrable loads. We consider a DPG method and a least-squares FEM for the Poisson problem. For both methods we analyze regularization approaches that allow the use of H-1 loads and also study the case of point loads. For all cases we prove appropriate convergence orders. We present various numerical experiments that confirm our theoretical results. Our approach extends to general well-posed second-order problems.
  • Loading...
    Thumbnail Image
    Item
    New a priori analysis of first-order system least-squares finite element methods for parabolic problems
    (2019) Führer, Thomas; Karkulik, Michael
  • Loading...
    Thumbnail Image
    Item
    Note on discontinuous trace approximation in the practical DPG method
    (2014) Heuer, Norbert; Karkulik, Michael; Sayas, F.
  • Loading...
    Thumbnail Image
    Item
    On 2D Newest Vertex Bisection : Optimality of Mesh-Closure and H (1)-Stability of L (2)-Projection
    (2013) Karkulik, Michael; Pavlicek, D.; Praetorius, D.
  • Loading...
    Thumbnail Image
    Item
    ON THE COUPLING OF DPG AND BEM
    (2017) Führer, Thomas; Heuer, Norbert; Karkulik, Michael
  • Loading...
    Thumbnail Image
    Item
    QUASI-OPTIMAL CONVERGENCE RATE FOR AN ADAPTIVE BOUNDARY ELEMENT METHOD
    (2013) Feischl, M.; Karkulik, Michael; Melenk, J.; Praetorius, D.
  • «
  • 1 (current)
  • 2
  • »

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback