Unbounded mass radial solutions for the Keller-Segel equation in the disk
dc.contributor.author | Bonheure, Denis | |
dc.contributor.author | Casteras, Jean Baptiste | |
dc.contributor.author | Roman, Carlos | |
dc.date.accessioned | 2024-01-10T13:10:17Z | |
dc.date.available | 2024-01-10T13:10:17Z | |
dc.date.issued | 2021 | |
dc.description.abstract | We consider the boundary value problem | |
dc.description.abstract | {-Delta u + u - lambda e(u) = 0 ,u > 0 in B-1(0) | |
dc.description.abstract | partial derivative(nu)u = 0 on partial derivative B-1(0), | |
dc.description.abstract | whose solutions correspond to steady states of the Keller-Segel system for chemotaxis. Here B-1(0) is the unit disk,. the outer normal to partial derivative B-1(0), and lambda > 0 is a parameter. We show that, provided lambda is sufficiently small, there exists a family of radial solutions u(lambda) to this system which blow up at the origin and concentrate on partial derivative B-1(0), as lambda -> 0. These solutions satisfy | |
dc.description.abstract | lim(lambda -> 0) u lambda(0)/vertical bar in lambda vertical bar = 0 and 0 lim(lambda -> 0) 1/vertical bar in lambda vertical bar integral(B1(0)) (lambda eu lambda(x)) dx < infinity, | |
dc.description.abstract | having in particular unbounded mass, as lambda -> 0. | |
dc.description.funder | Bonheure's research (FNRS) | |
dc.description.funder | French National Research Agency (ANR) | |
dc.description.funder | Chilean National Agency for Research and Development (ANID) through FONDECYT Iniciacion | |
dc.description.funder | King Baudouin Foundation - Thelam Funds | |
dc.description.funder | Advanced ARC grant at ULB - Partial Differential Equations in interaction | |
dc.description.funder | Universite libre de Bruxelles | |
dc.fechaingreso.objetodigital | 2024-03-21 | |
dc.format.extent | 30 páginas | |
dc.fuente.origen | WOS | |
dc.identifier.doi | 10.1007/s00526-021-02081-8 | |
dc.identifier.eissn | 1432-0835 | |
dc.identifier.issn | 0944-2669 | |
dc.identifier.uri | https://doi.org/10.1007/s00526-021-02081-8 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/77823 | |
dc.identifier.wosid | WOS:000685965500003 | |
dc.information.autoruc | Facultad de Matemáticas; Román Parra, Carlos Patricio; S/I; 1099610 | |
dc.issue.numero | 5 | |
dc.language.iso | en | |
dc.nota.acceso | contenido parcial | |
dc.publisher | SPRINGER HEIDELBERG | |
dc.revista | CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS | |
dc.rights | acceso restringido | |
dc.subject | STATIONARY SOLUTIONS | |
dc.subject | STEADY-STATES | |
dc.subject | SYSTEM | |
dc.title | Unbounded mass radial solutions for the Keller-Segel equation in the disk | |
dc.type | artículo | |
dc.volumen | 60 | |
sipa.codpersvinculados | 1099610 | |
sipa.index | WOS | |
sipa.trazabilidad | Carga SIPA;09-01-2024 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Unbounded mass radial solutions for the Keller-Segel equation in the disk.pdf
- Size:
- 2.5 KB
- Format:
- Adobe Portable Document Format
- Description: