The Simons Observatory: Pipeline comparison and validation for large-scale <i>B</i>-modes

dc.contributor.authorWolz, Kevin
dc.contributor.authorAzzoni, Susanna
dc.contributor.authorHervias-Caimapo, Carlos
dc.contributor.authorErrard, Josquin
dc.contributor.authorKrachmalnicoff, Nicoletta
dc.contributor.authorAlonso, David
dc.contributor.authorBaccigalupi, Carlo
dc.contributor.authorBaleato Lizancos, Anton
dc.contributor.authorBrown, Michael L.
dc.contributor.authorCalabrese, Erminia
dc.contributor.authorChluba, Jens
dc.contributor.authorDunkley, Jo
dc.contributor.authorFabbian, Giulio
dc.contributor.authorGalitzki, Nicholas
dc.contributor.authorJost, Baptiste
dc.contributor.authorMorshed, Magdy
dc.contributor.authorNati, Federico
dc.date.accessioned2025-01-20T16:12:38Z
dc.date.available2025-01-20T16:12:38Z
dc.date.issued2024
dc.description.abstractContext. The upcoming Simons Observatory Small Aperture Telescopes aim at achieving a constraint on the primordial tensor-to-scalar ratio r at the level of sigma(r = 0)less than or similar to 0.003, observing the polarized CMB in the presence of partial sky coverage, cosmic variance, inhomogeneous non-white noise, and Galactic foregrounds. Aims. We present three different analysis pipelines able to constrain r given the latest available instrument performance, and compare their predictions on a set of sky simulations that allow us to explore a number of Galactic foreground models and elements of instrumental noise, relevant for the Simons Observatory. Methods. The three pipelines employ different combinations of parametric and non-parametric component separation at the map and power spectrum levels, and use B-mode purification to estimate the CMB B-mode power spectrum. We applied them to a common set of simulated realistic frequency maps, and compared and validated them with focus on their ability to extract robust constraints on the tensor-to-scalar ratio r. We evaluated their performance in terms of bias and statistical uncertainty on this parameter. Results. In most of the scenarios the three methodologies achieve similar performance. Nevertheless, several simulations with complex foreground signals lead to a > 2 sigma bias on r if analyzed with the default versions of these pipelines, highlighting the need for more sophisticated pipeline components that marginalize over foreground residuals. We show two such extensions, using power-spectrum-based and map-based methods, that are able to fully reduce the bias on r below the statistical uncertainties in all foreground models explored, at a moderate cost in terms of sigma(r).
dc.fuente.origenWOS
dc.identifier.doi10.1051/0004-6361/202346105
dc.identifier.eissn1432-0746
dc.identifier.issn0004-6361
dc.identifier.urihttps://doi.org/10.1051/0004-6361/202346105
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/90345
dc.identifier.wosidWOS:001230620000001
dc.language.isoen
dc.revistaAstronomy & astrophysics
dc.rightsacceso restringido
dc.subjectmethods: data analysis
dc.subjectmethods: statistical
dc.subjectcosmic background radiation
dc.subjectcosmological parameters
dc.subjectearly Universe
dc.subjectinflation
dc.titleThe Simons Observatory: Pipeline comparison and validation for large-scale <i>B</i>-modes
dc.typeartículo
dc.volumen686
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files