Enhanced spin current transmissivity in Pt/CoFe<sub>2</sub>O<sub>4</sub> bilayers with thermally induced interfacial magnetic modification

dc.contributor.authorGamino, M.
dc.contributor.authorOliveira, A. B.
dc.contributor.authorMaior, D. S.
dc.contributor.authorRibeiro, P. R. T.
dc.contributor.authorMachado, F. L. A.
dc.contributor.authorMori, T. J. A.
dc.contributor.authorCorrea, M. A.
dc.contributor.authorBohn, F.
dc.contributor.authorRodriguez-Suarez, R. L.
dc.contributor.authorFontcuberta, J.
dc.contributor.authorRezende, S. M.
dc.date.accessioned2025-01-20T17:17:40Z
dc.date.available2025-01-20T17:17:40Z
dc.date.issued2023
dc.description.abstractWe report on processes of generation of spin current and conversion into charge current in CoFe2O4/Pt bilayers by means of spin Hall magnetoresistance (SMR) and spin Seebeck effect (SSE) experiments. Specifically, we explore (001) full-textured CoFe2O4 (CFO) thin films grown onto (001)-oriented SrTiO3 substrates, covered with Pt layers deposited under two different conditions: one at room temperature and another at high temperature (400 degrees C). The x-ray absorption spectroscopy measurements indicate that the Pt layer deposited at high temperature induces an interfacial magneticlike phase (Fe,Co)-Pt alloy, which influences the magnetic behavior of the structure and is responsible for the enhancement of the spin transmission at the interface. By analyzing the SMR data, we conclude that collinear and noncollinear magnetic domains coexist at the CFO-(Fe,Co)-Pt interface. By combining the data from the SMR and SSE measurements, we obtain the ratios between the values of the spin Hall angle (theta SH) and between the ones of the spin-mixing conductance (g up arrow down arrow that while the value of theta SH decreases by one-half with the heat treatment, the value of g up arrow down arrow one order of magnitude. We interpret the increase of g up arrow down arrow eff in terms of unexpected magnetic reconstructions, which produce an enhancement of the magnetic moment arisen at the interface. Since the spin-mixing conductance determines the efficiency of the spin current transmission through the interface, the spinel ferrite cobalt in contact with a normal metal with a suitable heat treatment becomes a promising material for spintronics device applications.
dc.fuente.origenWOS
dc.identifier.doi10.1103/PhysRevB.108.224402
dc.identifier.eissn2469-9969
dc.identifier.issn2469-9950
dc.identifier.urihttps://doi.org/10.1103/PhysRevB.108.224402
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/91365
dc.identifier.wosidWOS:001141689400003
dc.issue.numero22
dc.language.isoen
dc.revistaPhysical review b
dc.rightsacceso restringido
dc.titleEnhanced spin current transmissivity in Pt/CoFe<sub>2</sub>O<sub>4</sub> bilayers with thermally induced interfacial magnetic modification
dc.typeartículo
dc.volumen108
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files