A Framework for Modelling Thermal Load Sensitivity Across Life

dc.catalogadorpva
dc.contributor.authorArnold, Pieter A.
dc.contributor.authorNoble, Daniel W. A.
dc.contributor.authorNicotra, Adrienne B.
dc.contributor.authorKearney, Michael R.
dc.contributor.authorRezende Landaeta, Enrico
dc.contributor.authorAndrew, Samuel C.
dc.contributor.authorBriceño, Verónica F.
dc.contributor.authorBuckley, Lauren B.
dc.contributor.authorChristian, Keith A.
dc.contributor.authorClusella‐Trullas, Susana
dc.contributor.authorGeange, Sonya R.
dc.contributor.authorGuja, Lydia K.
dc.contributor.authorJiménez Robles, Octavio
dc.contributor.authorKefford, Ben J.
dc.contributor.authorKellermann, Vanessa
dc.contributor.authorLeigh, Andrea
dc.contributor.authorMarchin, Renée M.
dc.contributor.authorMokany, Karel
dc.contributor.authorBennett, Joanne M.
dc.date.accessioned2025-07-09T21:06:25Z
dc.date.available2025-07-09T21:06:25Z
dc.date.issued2025
dc.description.abstractForecasts of vulnerability to climate warming require an integrative understanding of how species are exposed to, are damaged by, and recover from thermal stress in natural environments. The sensitivity of species to temperature depends on the frequency, duration, and magnitude of thermal stress. Thus, there is a generally recognized need to move beyond physiological metrics based solely on critical thermal limits and integrate them with natural heat exposure regimes. Here we propose the thermal load sensitivity (TLS) framework, which integrates biophysical principles for quantifying exposure with physiological principles of the dynamics of damage and repair processes in driving sublethal impacts on organisms. Building upon the established thermal death time (TDT) model, which integrates both the magnitude and duration of stress, the TLS framework attempts to disentangle the accumulation of damage and subsequent repair processes that alter responses to thermal stress. With the aid of case studies and reproducible simulation examples, we discuss how the TLS framework can be applied to enhance our understanding of the ecology and evolution of heat stress responses. These include assessing thermal sensitivity across diverse taxonomic groups, throughout ontogeny, and for modular organisms, as well as integrating additional stressors in combination with temperature. We identify critical research opportunities, knowledge gaps, and novel ways of integrating physiological measures of thermal sensitivity to improve understanding and predictions of thermal vulnerability at various scales across life.
dc.format.extent18 páginas
dc.fuente.origenORCID
dc.identifier.doi10.1111/gcb.70315
dc.identifier.eissn1365-2486
dc.identifier.issn1354-1013
dc.identifier.urihttps://doi.org/10.1111/gcb.70315
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/104908
dc.information.autorucFacultad de Ciencias Biológicas; Rezende Landaeta, Enrico; 0000-0002-6245-9605; 104299
dc.issue.numero7
dc.language.isoen
dc.nota.accesocontenido parcial
dc.publisherJohn Wiley & Sons
dc.revistaGlobal Change Biology
dc.rightsacceso restringido
dc.subjectCritical thermal limits
dc.subjectHeat load
dc.subjectHeat stress
dc.subjectThermal death time
dc.subjectThermal fertility limits
dc.subjectThermal sensitivity
dc.subjectThermal tolerance
dc.subjectThermal vulnerability
dc.subject.ddc570
dc.subject.deweyBiologíaes_ES
dc.subject.ods13 Climate action
dc.subject.odspa13 Acción por el clima
dc.titleA Framework for Modelling Thermal Load Sensitivity Across Life
dc.typeartículo
dc.volumen31
sipa.codpersvinculados104299
sipa.trazabilidadORCID;2025-07-07
Files