RIGID SURFACES ARBITRARILY CLOSE TO THE BOGOMOLOV-MIYAOKA-YAU LINE

dc.contributor.authorStover, Matthew
dc.contributor.authorUrzua, Giancarlo
dc.date.accessioned2025-01-20T20:22:30Z
dc.date.available2025-01-20T20:22:30Z
dc.date.issued2022
dc.description.abstractWe prove the existence of rigid compact complex surfaces of general type whose Chern slopes are arbitrarily close to the Bogomolov-Miyaoka-Yau bound of 3. In addition, each of these surfaces has first Betti number equal to 4.
dc.fuente.origenWOS
dc.identifier.doi10.1353/ajm.2022.0044
dc.identifier.eissn1080-6377
dc.identifier.issn0002-9327
dc.identifier.urihttps://doi.org/10.1353/ajm.2022.0044
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/92680
dc.identifier.wosidWOS:001070340800009
dc.issue.numero6
dc.language.isoen
dc.pagina.final1804
dc.pagina.inicio1783
dc.revistaAmerican journal of mathematics
dc.rightsacceso restringido
dc.titleRIGID SURFACES ARBITRARILY CLOSE TO THE BOGOMOLOV-MIYAOKA-YAU LINE
dc.typeartículo
dc.volumen144
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files