Spectral non-self-adjoint analysis of complex Dirac, Pauli and Schrodinger operators with constant magnetic fields of full rank

dc.contributor.authorSambou, Diomba
dc.date.accessioned2025-01-23T21:17:11Z
dc.date.available2025-01-23T21:17:11Z
dc.date.issued2019
dc.description.abstractWe consider Dirac, Pauli and Schrodinger quantum Hamiltonians with constant magnetic fields of full rank in L-2(R-2d), d >= 1, perturbed by non-self-adjoint (matrix-valued) potentials. On the one hand, we show the existence of non-self-adjoint perturbations, generating near each point of the essential spectrum of the operators, infinitely many (complex) eigenvalues. On the other hand, we give asymptotic behaviours of the number of the (complex) eigenvalues. In particular, for compactly supported potentials, our results establish non-self-adjoint extensions of Raikov-Warzel [Rev. in Math. Physics 14 (2002), 1051-1072] and Melgaard-Rozenblum [Commun. PDE. 28 (2003), 697-736] results. So, we show how the (complex) eigenvalues converge to the points of the essential spectrum asymptotically, i.e., up to a multiplicative explicit constant, as
dc.description.abstract1/d! (vertical bar 1nr vertical bar/1n vertical bar 1nr vertical bar)(d), r SE arrow 0,
dc.description.abstractin small annulus of radius r > 0 around the points of the essential spectrum.
dc.description.funderChilean Fondecyt
dc.fuente.origenWOS
dc.identifier.doi10.3233/ASY-181491
dc.identifier.eissn1875-8576
dc.identifier.issn0921-7134
dc.identifier.urihttps://doi.org/10.3233/ASY-181491
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/101150
dc.identifier.wosidWOS:000458959000002
dc.issue.numero2
dc.language.isoen
dc.pagina.final136
dc.pagina.inicio113
dc.revistaAsymptotic analysis
dc.rightsacceso restringido
dc.subjectQuantum magnetic Hamiltonians of full rank
dc.subjectnon-self-adjoint (matrix-valued) perturbations
dc.subjectcomplex eigenvalues
dc.subjectLieb-Thirring inequalities
dc.titleSpectral non-self-adjoint analysis of complex Dirac, Pauli and Schrodinger operators with constant magnetic fields of full rank
dc.typeartículo
dc.volumen111
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files