Contrastive blind denoising autoencoder for real time denoising of industrial IoT sensor data

dc.contributor.authorLangarica, Saul
dc.contributor.authorNunez, Felipe
dc.date.accessioned2025-01-20T20:18:11Z
dc.date.available2025-01-20T20:18:11Z
dc.date.issued2023
dc.description.abstractIn an industrial IoT setting, ensuring the quality of sensor data is a must when data-driven algorithms operate on the upper layers of the control system. Unfortunately, the common place in industrial facilities is to find sensor time series heavily corrupted by noise and outliers. This work proposes a purely data-driven self-supervised learning-based approach, based on a blind denoising autoencoder, for real time denoising of industrial sensor data. The term blind stresses that no prior knowledge about the noise is required for denoising, in contrast to typical denoising autoencoders. Blind denoising is achieved by using a noise contrastive estimation (NCE) regularization on the latent space of the autoencoder, which not only helps to denoise but also induces a meaningful and smooth latent space that can be exploited in other downstream tasks. Experimental evaluation in both a simulated system and a real industrial process shows that the proposed technique outperforms classical denoising methods.
dc.fuente.origenWOS
dc.identifier.doi10.1016/j.engappai.2023.105838
dc.identifier.eissn1873-6769
dc.identifier.issn0952-1976
dc.identifier.urihttps://doi.org/10.1016/j.engappai.2023.105838
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/92446
dc.identifier.wosidWOS:000922139100001
dc.language.isoen
dc.revistaEngineering applications of artificial intelligence
dc.rightsacceso restringido
dc.subjectCyber-physical systems
dc.subjectAutoencoders
dc.subjectNoise contrastive estimation
dc.subjectSelf-supervised learning
dc.titleContrastive blind denoising autoencoder for real time denoising of industrial IoT sensor data
dc.typeartículo
dc.volumen120
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files