Differential geometric invariants for time-reversal symmetric Bloch bundles II: The low-dimensional "quaternionic" case

dc.contributor.authorDe Nittis, Giuseppe
dc.contributor.authorGomi, Kiyonori
dc.date.accessioned2025-01-20T17:27:54Z
dc.date.available2025-01-20T17:27:54Z
dc.date.issued2023
dc.description.abstractThis paper is devoted to the construction of differential geometric invariants for the classification of "quaternionic" vector bundles. Provided that the base space is a smooth manifold of dimension two or three endowed with an involution that leaves fixed only a finite number of points, it is possible to prove that the Wess-Zumino term and the Chern-Simons invariant yield topological invariants able to distinguish between inequivalent realizations of "quaternionic" structures. This is a nontrivial generalization of results previously known only in the case of tori with time-reversal involution.
dc.fuente.origenWOS
dc.identifier.doi10.2140/agt.2023.23.2925
dc.identifier.issn1472-2739
dc.identifier.urihttps://doi.org/10.2140/agt.2023.23.2925
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/91577
dc.identifier.wosidWOS:001087448200001
dc.issue.numero7
dc.language.isoen
dc.pagina.final2974
dc.pagina.inicio2925
dc.revistaAlgebraic and geometric topology
dc.rightsacceso restringido
dc.titleDifferential geometric invariants for time-reversal symmetric Bloch bundles II: The low-dimensional "quaternionic" case
dc.typeartículo
dc.volumen23
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files