Transport mechanisms of the anthropogenic contaminant sulfamethoxazole in volcanic ash soils at equilibrium pH evaluated using the HYDRUS-1D model

dc.catalogadorvdr
dc.contributor.authorUrdiales, Cristian
dc.contributor.authorUrdiales Flores, Diego
dc.contributor.authorTapia, Yasna
dc.contributor.authorCáceres Jensen, Lizethly
dc.contributor.authorSimunek, Jirka
dc.contributor.authorAntilén Lizana, Mónica Paulina
dc.date.accessioned2025-06-19T19:50:51Z
dc.date.available2025-06-19T19:50:51Z
dc.date.issued2025
dc.description.abstractThe volcanic soils in Chile, where a significant portion of agricultural activities take place, are impacted by the presence of veterinary drugs, including sulfamethoxazole (SMX). The study examines how different soil types influence the movement and retention of sulfamethoxazole (SMX) across four regions of Chile, focusing on conditions at a neutral pH of 7.0. Collipulli's Ultisol soils (CLL), characterized by high clay and sand content but low organic matter (OM), promote low SMX adsorption and rapid transport. In contrast, the volcanic ash-derived Andisols from Frutillar (FRU), Nueva Braunau (NBR), and Osorno (OSR) have high OM and cation exchange capacity (CEC), which enhance their ability to retain SMX and reduce its mobility. Adsorption batch, kinetics, and column breakthrough curve (BTC) experiments were conducted alongside transport modelling. The adsorption kinetics of SMX in CLL soil followed a pseudo-first-order (PFO) model, while FRU, NBR, and OSR soils aligned with a pseudo-second-order (PSO) model. Freundlich isotherms effectively described SMX adsorption in CLL and OSR soils, indicating multilayer adsorption, while Langmuir isotherms fit the FRU and NBR soils, suggesting monolayer adsorption. Using HYDRUS-1D software, we simulated SMX transport in soil columns. BTCs were best modelled using a two-site sorption model with both equilibrium and kinetic adsorption. SMX was more mobile in CLL soil due to its lower organic matter (OM) content and adsorption capacity. In contrast, FRU, NBR, and OSR soils showed slower transport, reflecting higher OM content and greater adsorption capacity, reducing SMX leaching. These findings emphasize the importance of soil properties, such as OM content, in influencing SMX behavior, and are vital for assessing environmental impacts and developing mitigation strategies.
dc.fechaingreso.objetodigitalNo aplica
dc.format.extent11 páginas
dc.fuente.origenORCID
dc.identifier.doi10.1016/j.jhazmat.2024.137077
dc.identifier.eissn1873-3336
dc.identifier.urihttps://doi.org/10.1016/j.jhazmat.2024.137077
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/104712
dc.information.autorucEscuela de Química; Antilén Lizana, Mónica Paulina; 0000-0003-0512-4267; 144275
dc.language.isoen
dc.nota.accesoSin adjunto
dc.pagina.final11
dc.pagina.inicio1
dc.revistaJournal of Hazardous Materials
dc.rightsacceso restringido
dc.subjectFate and transport
dc.subjectColumn breakthrough curves
dc.subjectVolcanic soils
dc.subjectAntibiotic pollution
dc.subjectHydrus − 1D model
dc.subject.ddc620
dc.subject.ods09 Industry, innovation and infrastructure
dc.subject.ods15 Life on land
dc.subject.odspa09 Industria, innovación e infraestructura
dc.subject.odspa15 Vida de ecosistemas terrestres
dc.titleTransport mechanisms of the anthropogenic contaminant sulfamethoxazole in volcanic ash soils at equilibrium pH evaluated using the HYDRUS-1D model
dc.typeartículo
dc.volumen487
sipa.codpersvinculados144275
sipa.trazabilidadORCID;2025-06-16
Files