TWO-POINT DISTORTION THEOREMS FOR HARMONIC MAPPINGS

dc.contributor.authorChuaqui, Martin
dc.contributor.authorDuren, Peter
dc.contributor.authorOsgood, Brad
dc.date.accessioned2025-01-21T00:07:23Z
dc.date.available2025-01-21T00:07:23Z
dc.date.issued2009
dc.description.abstractIn earlier work, the authors have extended Nehari's well-known Schwarzian derivative criterion for univalence of analytic functions to a univalence criterion for canonical lifts of harmonic mappings to minimal surfaces. The present paper develops some quantitative versions of that result in the form of two-point distortion theorems. Along the way some distortion theorems for curves in R(n) are given, thereby recasting a recent injectivity criterion of Chuaqui and Gevirtz in quantitative form.
dc.description.funderFondecyt
dc.fuente.origenWOS
dc.identifier.issn0019-2082
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/95627
dc.identifier.wosidWOS:000207877200005
dc.issue.numero4
dc.language.isoen
dc.pagina.final1075
dc.pagina.inicio1061
dc.revistaIllinois journal of mathematics
dc.rightsacceso restringido
dc.titleTWO-POINT DISTORTION THEOREMS FOR HARMONIC MAPPINGS
dc.typeartículo
dc.volumen53
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files