Boundary regularity of weakly anchored harmonic maps

dc.contributor.authorContreras, Andres
dc.contributor.authorLamy, Xavier
dc.contributor.authorRodiac, Remy
dc.date.accessioned2025-01-23T21:32:57Z
dc.date.available2025-01-23T21:32:57Z
dc.date.issued2015
dc.description.abstractIn this note, we study the boundary regularity of the minimizers of a family of weak anchoring energies that model the states of liquid crystals. We establish optimal boundary regularity in all dimensions n >= 3. In dimension n = 3, this yields full regularity at the boundary, which stands in sharp contrast with the observation of boundary defects in physics works. We also show that, in the cases of weak and strong anchoring, the regularity of the minimizers is inherited from that of their corresponding limit problems. (C) 2015 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
dc.fuente.origenWOS
dc.identifier.doi10.1016/j.crma.2015.09.014
dc.identifier.eissn1778-3569
dc.identifier.issn1631-073X
dc.identifier.urihttps://doi.org/10.1016/j.crma.2015.09.014
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/101504
dc.identifier.wosidWOS:000366617600006
dc.issue.numero12
dc.language.isoen
dc.pagina.final1097
dc.pagina.inicio1093
dc.revistaComptes rendus mathematique
dc.rightsacceso restringido
dc.titleBoundary regularity of weakly anchored harmonic maps
dc.typeartículo
dc.volumen353
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files