Continuum limits of discrete isoperimetric problems and Wulff shapes in lattices and quasicrystal tilings

dc.contributor.authorDel Nin, Giacomo
dc.contributor.authorPetrache, Mircea
dc.date.accessioned2025-01-20T21:01:59Z
dc.date.available2025-01-20T21:01:59Z
dc.date.issued2022
dc.description.abstractWe prove discrete-to-continuum convergence of interaction energies defined on lattices in the Euclidean space (with interactions beyond nearest neighbours) to a crystalline perimeter, and we discuss the possible Wulff shapes obtainable in this way. Exploiting the "multigrid construction" of quasiperiodic tilings (which is an extension of De Bruijn's "pentagrid" construction of Penrose tilings) we adapt the same techniques to also find the macroscopical homogenized perimeter when we microscopically rescale a given quasiperiodic tiling.
dc.fuente.origenWOS
dc.identifier.doi10.1007/s00526-022-02318-0
dc.identifier.eissn1432-0835
dc.identifier.issn0944-2669
dc.identifier.urihttps://doi.org/10.1007/s00526-022-02318-0
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/92992
dc.identifier.wosidWOS:000866159100005
dc.issue.numero6
dc.language.isoen
dc.revistaCalculus of variations and partial differential equations
dc.rightsacceso restringido
dc.titleContinuum limits of discrete isoperimetric problems and Wulff shapes in lattices and quasicrystal tilings
dc.typeartículo
dc.volumen61
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files