Stresses Induced by Magma Chamber Pressurization Altered by Mechanical Layering and Layer Dip

dc.catalogadorjlo
dc.contributor.authorClunes Squella, Matías
dc.contributor.authorBrowning, John
dc.contributor.authorCortez Campaña, Jorge Osvaldo
dc.contributor.authorCembrano Perasso, José Miguel
dc.contributor.authorMarquardt Roman, Carlos Jorge
dc.contributor.authorKavanagh, Janine L.
dc.contributor.authorGudmundsson, Agust
dc.date.accessioned2024-05-14T15:11:58Z
dc.date.available2024-05-14T15:11:58Z
dc.date.issued2024
dc.description.abstractUnderstanding the stress distribution around shallow magma chambers is vital for forecasting eruption sites and magma propagation directions. To achieve accurate forecasts, comprehensive insight into the stress field surrounding magma chambers and near the surface is essential. Existing stress models for pressurized magma chambers often assume a homogenous elastic half-space or a heterogeneous crust with varying mechanical properties in horizontal layers. However, as many volcanoes have complex, non-horizontal, and heterogeneous layers, we enhance these assumptions by considering mechanically stratified layers with varying dips. We employed the Finite Element Method (FEM) to create numerical models simulating three chamber geometries: circular, sill-like and prolate. The primary condition was a 10 MPa excess pressure within the magma chamber, generating the stress field. Layers dips by 20-degree increments, with differing elastic moduli, represented by stiffness ratios of the successive layers (EU/EL) ranging from 0.01 to 100. Our findings validate prior research on heterogeneous crustal modeling, showing that high stiffness ratios disrupt stress within layers and induce local stress rotations at mismatched interfaces. Layer dip further influences stress fields, shifting the location of maximum stress concentration over varying distances. This study underscores the significance of accurately understanding mechanical properties, layer dip in volcanoes, and magma chamber geometry. Improving forecasting of future eruption vents in active volcanoes, particularly in the Andes with its deformed, folded, and non-horizontal stratified crust, hinges on this knowledge. By expanding stress models to incorporate complex geological structures, we enhance our ability to forecast eruption sites and magma propagation paths.
dc.fechaingreso.objetodigital2024-03-05
dc.format.extent19 páginas
dc.fuente.origenORCID
dc.identifier.doi10.1029/2023JB027760
dc.identifier.eissn2169-9356
dc.identifier.urihttps://doi.org/10.1029/2023JB027760
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/85590
dc.identifier.wosidWOS:001217921100001
dc.information.autorucEscuela de Ingeniería; Clunes Squella, Matías; S/I; 1092273
dc.information.autorucEscuela de Ingeniería; Browning, John; 0000-0001-8022-6234; 1081089
dc.information.autorucEscuela de Ingeniería; Cortez Campaña, Jorge Osvaldo; S/I; 1183137
dc.information.autorucEscuela de Ingeniería; Cembrano Perasso, José Miguel; 0000-0003-4247-8259; 1008585
dc.information.autorucEscuela de Ingeniería; Marquardt Roman, Carlos Jorge; 0000-0002-8571-5931; 1012334
dc.issue.numero5
dc.language.isoen
dc.nota.accesocontenido completo
dc.pagina.final19
dc.pagina.inicio1
dc.revistaJGR Solid Earth
dc.rightsacceso abierto
dc.subject.ods09 Industry, innovation and infrastructure
dc.subject.odspa09 Industria, innovación e infraestructura
dc.titleStresses Induced by Magma Chamber Pressurization Altered by Mechanical Layering and Layer Dip
dc.typeartículo
dc.volumen129
sipa.codpersvinculados1092273
sipa.codpersvinculados1081089
sipa.codpersvinculados1183137
sipa.codpersvinculados1008585
sipa.codpersvinculados1012334
sipa.trazabilidadORCID;2024-05-13
Files