Stability analysis of a linear system coupling wave and heat equations with different time scales

dc.contributor.authorArias, Gonzalo
dc.contributor.authorCerpa, Eduardo
dc.contributor.authorMarx, Swann
dc.date.accessioned2025-01-20T16:04:20Z
dc.date.available2025-01-20T16:04:20Z
dc.date.issued2025
dc.description.abstractIn this paper we consider a system coupling a wave equation with a heat equation through its boundary conditions. The existence of a small parameter in the heat equation, as a factor multiplying the time derivative, implies the existence of different time scales between the constituents of the system. This suggests the idea of applying a singular perturbation method to study stability properties. In fact, we prove that this method works for the system under study. Using this strategy, we get the stability of the system and a Tikhonov theorem, which allows us to approximate the solution of the coupled system using some appropriate uncoupled subsystems. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
dc.fuente.origenWOS
dc.identifier.doi10.1016/j.jmaa.2024.128923
dc.identifier.eissn1096-0813
dc.identifier.issn0022-247X
dc.identifier.urihttps://doi.org/10.1016/j.jmaa.2024.128923
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/89717
dc.identifier.wosidWOS:001338769300001
dc.issue.numero1
dc.language.isoen
dc.revistaJournal of mathematical analysis and applications
dc.rightsacceso restringido
dc.subjectSingular perturbation method
dc.subjectCoupled PDEs
dc.subjectLyapunov functionals
dc.subjectStability
dc.subjectHeat equation
dc.subjectWave equation
dc.titleStability analysis of a linear system coupling wave and heat equations with different time scales
dc.typeartículo
dc.volumen543
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files