The <i>hp</i>-version of the boundary element method with quasi-uniform meshes for weakly singular operators on surfaces
| dc.contributor.author | Bespalov, Alexei | |
| dc.contributor.author | Heuer, Norbert | |
| dc.date.accessioned | 2025-01-21T00:06:12Z | |
| dc.date.available | 2025-01-21T00:06:12Z | |
| dc.date.issued | 2010 | |
| dc.description.abstract | We prove an a priori error estimate for the hp-version of the boundary element method with weakly singular operators in three dimensions. The underlying meshes are quasi-uniform. Our model problem is that of the Laplacian exterior to an open surface, where the solution has strong singularities that are not L-2-regular. Our results confirm previously conjectured convergence rates in h (the mesh size) and p (the polynomial degree) and these rates are given explicitly in terms of the exponents of the singular functions. In particular, for sufficiently smooth given data we prove a convergence in the energy norm like O(h(1/2)p(-1)). | |
| dc.fuente.origen | WOS | |
| dc.identifier.doi | 10.1093/imanum/drn052 | |
| dc.identifier.eissn | 1464-3642 | |
| dc.identifier.issn | 0272-4979 | |
| dc.identifier.uri | https://doi.org/10.1093/imanum/drn052 | |
| dc.identifier.uri | https://repositorio.uc.cl/handle/11534/95579 | |
| dc.identifier.wosid | WOS:000277509800002 | |
| dc.issue.numero | 2 | |
| dc.language.iso | en | |
| dc.pagina.final | 400 | |
| dc.pagina.inicio | 377 | |
| dc.revista | Ima journal of numerical analysis | |
| dc.rights | acceso restringido | |
| dc.subject | hp-version with quasi-uniform meshes | |
| dc.subject | boundary element method | |
| dc.subject | weakly singular operators | |
| dc.subject | singularities | |
| dc.title | The <i>hp</i>-version of the boundary element method with quasi-uniform meshes for weakly singular operators on surfaces | |
| dc.type | artículo | |
| dc.volumen | 30 | |
| sipa.index | WOS | |
| sipa.trazabilidad | WOS;2025-01-12 |
