Boundary blow-up solutions to elliptic systems of competitive type

dc.contributor.authorGarcía-Melián, J
dc.contributor.authorRossi, JD
dc.date.accessioned2025-01-21T01:07:31Z
dc.date.available2025-01-21T01:07:31Z
dc.date.issued2004
dc.description.abstractWe consider the elliptic system Deltau = u(p)v(q), Deltav = u(r)v(s) in Ohm, where p, s > 1, q, r > 0, and Ohm subset of R-N is a smooth bounded domain, subject to different types of Dirichlet boundary conditions: (F) u = lambda, v = mu, (I) u = v = +infinity and (SF) u = +infinity, v = mu on partial derivativeOhm, where lambda, mu > 0. Under several hypotheses on the parameters p, q, r, s, we show existence and nonexistence of positive solutions, uniqueness and nonuniqueness. We further provide the exact asymptotic behaviour of the solutions and their normal derivatives near partial derivativeOhm. Some more general related problems are also studied. (C) 2004 Published by Elsevier Inc.
dc.fuente.origenWOS
dc.identifier.doi10.1016/j.jde.2003.12.004
dc.identifier.eissn1090-2732
dc.identifier.issn0022-0396
dc.identifier.urihttps://doi.org/10.1016/j.jde.2003.12.004
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/96342
dc.identifier.wosidWOS:000224505700006
dc.issue.numero1
dc.language.isoen
dc.pagina.final181
dc.pagina.inicio156
dc.revistaJournal of differential equations
dc.rightsacceso restringido
dc.subjectelliptic systems
dc.subjectboundary blow-up
dc.titleBoundary blow-up solutions to elliptic systems of competitive type
dc.typeartículo
dc.volumen206
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files