Using publicly available data for predicting socioeconomic values in urban context
dc.catalogador | vdr | |
dc.contributor.advisor | Reutter de la Maza, Juan | |
dc.contributor.author | Ojeda Aguila, Maximiliano | |
dc.contributor.other | Pontificia Universidad Católica de Chile. Escuela de Ingeniería | |
dc.date.accessioned | 2025-02-27T15:28:29Z | |
dc.date.available | 2025-02-27T15:28:29Z | |
dc.date.issued | 2024 | |
dc.description | Tesis (Master of Science in Engineering)--Pontificia Universidad Católica de Chile, 2024 | |
dc.description.abstract | Urban transportation networks are recognized for their pivotal role in forecasting city indicators and facilitating efficient planning and management. However, despite the increase of methodologies and models harnessing machine learning advancement to forecast these values, challenges persist in scenarios where direct demographic or economic data are limited or unavailable. In this work, we propose an approach to infer socioeconomic information in an urban context without relying on traditional, official data sources, but rather focusing on publicly available data relating to the digital footprints of the cities’ inhabitants. We leverage Graph Neural Network (GNN) models to capture the spatial relationships inherent in map data while integrating perceptual features extracted from images to enhance predictive accuracy. Our results demonstrate that the combination of these data sources enables a GNN to achieve robust performance in predicting socioeconomic indicators, particularly in settings where traditional demographic and economic data may be sparse or unavailable. Through our analysis, we show that while perceptual features alone offer substantial predictive power, the inclusion of map topology through GNN models provides crucial context, leading to better generalization and more reliable predictions across different urban areas. | |
dc.description.funder | Instituto Milenio Fundamento de los Datos (IMFD) | |
dc.fechaingreso.objetodigital | 2025-02-27 | |
dc.format.extent | xi, 47 páginas | |
dc.fuente.origen | SRIA | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/102274 | |
dc.information.autoruc | Escuela de Ingeniería; Reutter de la Maza, Juan; 0000-0002-2186-0312; 126898 | |
dc.information.autoruc | Escuela de Ingeniería; Ojeda Aguila, Maximiliano; 0009-0005-0379-0743; 1246333 | |
dc.language.iso | en | |
dc.nota.acceso | Contenido completo | |
dc.rights | acceso abierto | |
dc.subject | Graph neural networks | |
dc.subject | Urban transportation | |
dc.subject | Perceptual values | |
dc.subject | Socioeconomic forecasting | |
dc.subject.ddc | 610 | |
dc.subject.dewey | Medicina y salud | es_ES |
dc.subject.ods | 11 Sustainable cities and communities | |
dc.subject.odspa | 11 Ciudades y comunidades sostenibles | |
dc.title | Using publicly available data for predicting socioeconomic values in urban context | |
dc.type | tesis de maestría | |
sipa.codpersvinculados | 126898 | |
sipa.codpersvinculados | 1246333 |