Existence and Uniqueness of Monge Minimizers for a Multi-Marginal Optimal Transport Problem with Intermolecular Interactions Cost

dc.contributor.authorGerolin, Augusto
dc.contributor.authorPetrache, Mircea
dc.contributor.authorVargas-Jimenez, Adolfo
dc.date.accessioned2025-01-20T16:08:12Z
dc.date.available2025-01-20T16:08:12Z
dc.date.issued2024
dc.description.abstractWe investigate a new multi -marginal optimal transport problem arising from a dissociation model in the Strong Interaction Limit of Density Functional Theory. In this short note, we introduce such dissociation model, the corresponding optimal transport problem as well as show preliminary results on the existence and uniqueness of Monge solutions assuming absolute continuity of at least two of the marginals. Finally, we show that such marginal regularity conditions are necessary for the existence of an unique Monge solution.
dc.fuente.origenWOS
dc.identifier.issn0944-6532
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/90058
dc.identifier.wosidWOS:001261104400011
dc.issue.numero2
dc.language.isoen
dc.pagina.final618
dc.pagina.inicio603
dc.revistaJournal of convex analysis
dc.rightsacceso restringido
dc.subjectMulti-marginal optimal transport
dc.subjectdensity functional theory
dc.subjectdissociation energy
dc.titleExistence and Uniqueness of Monge Minimizers for a Multi-Marginal Optimal Transport Problem with Intermolecular Interactions Cost
dc.typeartículo
dc.volumen31
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files