Scaling limit of stationary coupled Sasamoto-Spohn models

dc.contributor.authorButelmann, Ian
dc.contributor.authorMoreno Flores, Gregorio R.
dc.date.accessioned2025-01-20T21:00:56Z
dc.date.available2025-01-20T21:00:56Z
dc.date.issued2022
dc.description.abstractWe introduce a family of stationary coupled Sasamoto-Spohn models and show that, in the weakly asymmetric regime, they converge to the energy solution of coupled Burgers equations. Moreover, we show that any system of coupled Burgers equations satisfying the so-called trilinear condition ensuring stationarity can be obtained as the scaling limit of a suitable system of coupled Sasamoto-Spohn models.
dc.description.abstractThe core of our proof, which avoids the use of spectral gap estimates, consists in a second order Boltzmann-Gibbs principle for the discrete model.
dc.description.funderFondecyt
dc.fuente.origenWOS
dc.identifier.doi10.1214/22-EJP819
dc.identifier.issn1083-6489
dc.identifier.urihttps://doi.org/10.1214/22-EJP819
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/92779
dc.identifier.wosidWOS:000910863300001
dc.language.isoen
dc.revistaElectronic journal of probability
dc.rightsacceso restringido
dc.subjectcoupled Burgers equations
dc.subjectKPZ equation
dc.subjectinteracting diffusions
dc.subjectenergy solutions
dc.titleScaling limit of stationary coupled Sasamoto-Spohn models
dc.typeartículo
dc.volumen27
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files