Oxygen response of the wine yeast Saccharomyces cerevisiae EC1118 grown under carbon-sufficient, nitrogen-limited enological conditions

dc.catalogadoraba
dc.contributor.authorAceituno, F. F.
dc.contributor.authorOrellana, M.
dc.contributor.authorTorres, J.
dc.contributor.authorMendoza, S.
dc.contributor.authorSlater, A. W.
dc.contributor.authorMelo Ledermann, Francisco Javier
dc.contributor.authorAgosin T., Eduardo
dc.date.accessioned2025-02-05T20:17:06Z
dc.date.available2025-02-05T20:17:06Z
dc.date.issued2012
dc.description.abstractDiscrete additions of oxygen play a critical role in alcoholic fermentation. However, few studies have quantitated the fate of dissolved oxygen and its impact on wine yeast cell physiology under enological conditions. We simulated the range of dissolved oxygen concentrations that occur after a pump-over during the winemaking process by sparging nitrogen-limited continuous cultures with oxygen-nitrogen gaseous mixtures. When the dissolved oxygen concentration increased from 1.2 to 2.7 μM, yeast cells changed from a fully fermentative to a mixed respirofermentative metabolism. This transition is characterized by a switch in the operation of the tricarboxylic acid cycle (TCA) and an activation of NADH shuttling from the cytosol to mitochondria. Nevertheless, fermentative ethanol production remained the major cytosolic NADH sink under all oxygen conditions, suggesting that the limitation of mitochondrial NADH reoxidation is the major cause of the Crabtree effect. This is reinforced by the induction of several key respiratory genes by oxygen, despite the high sugar concentration, indicating that oxygen overrides glucose repression. Genes associated with other processes, such as proline uptake, cell wall remodeling, and oxidative stress, were also significantly affected by oxygen. The results of this study indicate that respiration is responsible for a substantial part of the oxygen response in yeast cells during alcoholic fermentation. This information will facilitate the development of temporal oxygen addition strategies to optimize yeast performance in industrial fermentations.
dc.description.funderFONDECYT from CONICYT, Chile
dc.description.funderCONICYT, Chile
dc.description.funderICM (Iniciativa Cientifica Milenio, Chile)
dc.description.funderLallemand, Inc. (Canada)
dc.description.funderCONICYT
dc.description.funderVRI-UC
dc.format.extent13 páginas
dc.fuente.origenSIPA
dc.identifier.doi10.1128/AEM.02305-12
dc.identifier.eissn1098-5336
dc.identifier.issn0099-2240
dc.identifier.pubmedid23001663
dc.identifier.pubmedidPMC3497381
dc.identifier.scopusid2-s2.0-84870856370
dc.identifier.urihttps://doi.org/10.1128/AEM.02305-12
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/102162
dc.identifier.wosidWOS:000310915300021
dc.information.autorucFacultad de Ciencias Biológicas; Melo Ledermann, Francisco Javier; 0000-0002-0424-5991; 82342
dc.information.autorucEscuela de Ingeniería; Agosin T., Eduardo; 0000-0003-1656-150X; 99630
dc.issue.numero23
dc.language.isoen
dc.nota.accesocontenido parcial
dc.pagina.final8352
dc.pagina.inicio8340
dc.revistaApplied and environmental microbiology
dc.rightsacceso restringido
dc.subject.ddc570
dc.subject.deweyBiologíaes_ES
dc.subject.ods13 Climate Action
dc.subject.odspa13 Acción por el clima
dc.titleOxygen response of the wine yeast Saccharomyces cerevisiae EC1118 grown under carbon-sufficient, nitrogen-limited enological conditions
dc.typeartículo
dc.volumen78
sipa.codpersvinculados82342
sipa.codpersvinculados99630
sipa.indexWOS
sipa.indexScopus
Files