Discrete spectrum of quantum Hall effect Hamiltonians I. Monotone edge potentials
dc.contributor.author | Bruneau, Vincent | |
dc.contributor.author | Miranda, Pablo | |
dc.contributor.author | Raikov, Georgi | |
dc.date.accessioned | 2024-01-10T12:04:58Z | |
dc.date.available | 2024-01-10T12:04:58Z | |
dc.date.issued | 2011 | |
dc.description.abstract | We consider the unperturbed operator H-0 = (-i del - A)(2) + W, self-adjoint in L-2(R-2). Here A is a magnetic potential which generates a constant magnetic field b > 0, and the edge potential W is a non-decreasing non-constant bounded function depending only on the first coordinate x is an element of R of (x, y) is an element of R-2. Then the spectrum of H-0 has a band structure and is absolutely continuous; moreover, the assumption lim(x ->infinity)(W(x) - W(-x)) < 2b implies the existence of infinitely many spectral gaps for H-0. We consider the perturbed operators H-+/- = H-0 +/- V where the electric potential V is an element of L-infinity(R-2) is non-negative and decays at infinity. We investigate the asymptotic distribution of the discrete spectrum of H-+/- in the spectral gaps of H-0. We introduce an effective Hamiltonian which governs the main asymptotic term; this Hamiltonian involves a pseudo-differential operator with generalized anti-Wick symbol equal to V. Further, we restrict our attention on perturbations V of compact support and constant sign. We establish a geometric condition on the support of V which guarantees the finiteness of the number of the eigenvalues of H-+/- in any spectral gap of H-0. In the case where this condition is violated, we show that, generically, the convergence of the infinite series of eigenvalues of H+ (resp. H-) to the lower (resp. upper) edge of a given spectral gap, is Gaussian. | |
dc.format.extent | 36 páginas | |
dc.fuente.origen | WOS | |
dc.identifier.doi | 10.4171/JST/11 | |
dc.identifier.eissn | 1664-0403 | |
dc.identifier.issn | 1664-039X | |
dc.identifier.uri | https://doi.org/10.4171/JST/11 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/75918 | |
dc.identifier.wosid | WOS:000209021500001 | |
dc.information.autoruc | Matemática;Georgi D. Raikov;S/I;1004967 | |
dc.issue.numero | 3 | |
dc.language.iso | en | |
dc.nota.acceso | Sin adjunto | |
dc.pagina.final | 272 | |
dc.pagina.inicio | 237 | |
dc.publisher | EUROPEAN MATHEMATICAL SOC | |
dc.revista | JOURNAL OF SPECTRAL THEORY | |
dc.rights | registro bibliográfico | |
dc.subject | Magnetic Schrodinger operators | |
dc.subject | spectral gaps | |
dc.subject | eigenvalue distribution | |
dc.subject.ods | 04 Quality Education | |
dc.subject.odspa | 04 Educación y calidad | |
dc.title | Discrete spectrum of quantum Hall effect Hamiltonians I. Monotone edge potentials | |
dc.type | artículo | |
dc.volumen | 1 | |
sipa.codpersvinculados | 1004967 | |
sipa.index | WOS | |
sipa.trazabilidad | Carga SIPA;09-01-2024 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 2024-05-28. Discrete spectrum of quantum Hall effect Hamiltonians I. Monotone edge potentials.pdf
- Size:
- 3.07 KB
- Format:
- Adobe Portable Document Format
- Description: