The fate of Landau levels under δ-interactions
dc.contributor.author | Behrndt, Jussi | |
dc.contributor.author | Holzmann, Markus | |
dc.contributor.author | Lotoreichik, Vladimir | |
dc.contributor.author | Raikov, Georgi | |
dc.date.accessioned | 2025-01-20T20:23:02Z | |
dc.date.available | 2025-01-20T20:23:02Z | |
dc.date.issued | 2022 | |
dc.description.abstract | We consider the self-adjoint Landau Hamiltonian H-0 in L-2(R-2) whose spectrum consists of infinitely degenerate eigenvalues Lambda(q), q is an element of Z(+), and the perturbed Landau Hamiltonian H-upsilon = H-0 + upsilon delta(Gamma), where Gamma subset of R-2 is a regular Jordan C-1,C-1-curve and upsilon is an element of L-p(Gamma; R), p > 1, has a constant sign. We investigate ker(H-upsilon - Lambda(q)), q is an element of Z(+), and show that generically | |
dc.description.abstract | 0 <= dim ker(H-upsilon - Lambda(q)) - dim ker(T-q(upsilon delta(Gamma))) < infinity, | |
dc.description.abstract | where T-q(upsilon delta(Gamma)) = p(q)(upsilon delta(Gamma))p(q), is an operator of Berezin-Toeplitz type, acting in p(q)L(2)(R-2), and p(q) is the orthogonal projection onto ker(H-0 - Lambda(q)). If upsilon not equal 0 and q = 0, then we prove that ker(T-0(upsilon delta(Gamma))) = {0}. If q >= 1 and Gamma = C-r is a circle of radius r, then we show that dim ker(T-q(delta(Cr))) <= q, and the set of r is an element of (0, infinity) for which dim ker(T-q(delta(Cr))) >= 1 is infinite and discrete. | |
dc.fuente.origen | WOS | |
dc.identifier.doi | 10.4171/JST/422 | |
dc.identifier.eissn | 1664-0403 | |
dc.identifier.issn | 1664-039X | |
dc.identifier.uri | https://doi.org/10.4171/JST/422 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/92706 | |
dc.identifier.wosid | WOS:000976030000008 | |
dc.issue.numero | 3 | |
dc.language.iso | en | |
dc.pagina.final | 1234 | |
dc.pagina.inicio | 1203 | |
dc.revista | Journal of spectral theory | |
dc.rights | acceso restringido | |
dc.subject | Landau Hamiltonian | |
dc.subject | delta-interactions | |
dc.subject | perturbations of eigenspaces | |
dc.subject | Berezin-Toeplitz operators | |
dc.subject | Laguerre polynomials | |
dc.title | The fate of Landau levels under δ-interactions | |
dc.type | artículo | |
dc.volumen | 12 | |
sipa.index | WOS | |
sipa.trazabilidad | WOS;2025-01-12 |