The fate of Landau levels under δ-interactions

dc.contributor.authorBehrndt, Jussi
dc.contributor.authorHolzmann, Markus
dc.contributor.authorLotoreichik, Vladimir
dc.contributor.authorRaikov, Georgi
dc.date.accessioned2025-01-20T20:23:02Z
dc.date.available2025-01-20T20:23:02Z
dc.date.issued2022
dc.description.abstractWe consider the self-adjoint Landau Hamiltonian H-0 in L-2(R-2) whose spectrum consists of infinitely degenerate eigenvalues Lambda(q), q is an element of Z(+), and the perturbed Landau Hamiltonian H-upsilon = H-0 + upsilon delta(Gamma), where Gamma subset of R-2 is a regular Jordan C-1,C-1-curve and upsilon is an element of L-p(Gamma; R), p > 1, has a constant sign. We investigate ker(H-upsilon - Lambda(q)), q is an element of Z(+), and show that generically
dc.description.abstract0 <= dim ker(H-upsilon - Lambda(q)) - dim ker(T-q(upsilon delta(Gamma))) < infinity,
dc.description.abstractwhere T-q(upsilon delta(Gamma)) = p(q)(upsilon delta(Gamma))p(q), is an operator of Berezin-Toeplitz type, acting in p(q)L(2)(R-2), and p(q) is the orthogonal projection onto ker(H-0 - Lambda(q)). If upsilon not equal 0 and q = 0, then we prove that ker(T-0(upsilon delta(Gamma))) = {0}. If q >= 1 and Gamma = C-r is a circle of radius r, then we show that dim ker(T-q(delta(Cr))) <= q, and the set of r is an element of (0, infinity) for which dim ker(T-q(delta(Cr))) >= 1 is infinite and discrete.
dc.fuente.origenWOS
dc.identifier.doi10.4171/JST/422
dc.identifier.eissn1664-0403
dc.identifier.issn1664-039X
dc.identifier.urihttps://doi.org/10.4171/JST/422
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/92706
dc.identifier.wosidWOS:000976030000008
dc.issue.numero3
dc.language.isoen
dc.pagina.final1234
dc.pagina.inicio1203
dc.revistaJournal of spectral theory
dc.rightsacceso restringido
dc.subjectLandau Hamiltonian
dc.subjectdelta-interactions
dc.subjectperturbations of eigenspaces
dc.subjectBerezin-Toeplitz operators
dc.subjectLaguerre polynomials
dc.titleThe fate of Landau levels under δ-interactions
dc.typeartículo
dc.volumen12
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files