Second order cubic corrections of large deviations for perturbed random walks*

dc.contributor.authorOviedo, Giancarlos
dc.contributor.authorPanizo, Gonzalo
dc.contributor.authorRamirez, Alejandro F.
dc.date.accessioned2025-01-20T21:07:04Z
dc.date.available2025-01-20T21:07:04Z
dc.date.issued2022
dc.description.abstractWe prove that the Beta random walk, introduced in [BC17] 2017, has cubic fluctuations from the large deviation principle of the GUE Tracy-Widom type for arbitrary values ?? > 0 and (3 > 0 of the parameters of the Beta distribution, removing previous restrictions on their values. Furthermore, we prove that the GUE Tracy-Widom fluctuations still hold in the intermediate disorder regime. We also show that any random walk in space-time random environment that matches certain moments with the Beta random walk also has GUE Tracy-Widom fluctuations in the intermediate disorder regime. As a corollary we show the emergence of GUE Tracy-Widom fluctuations from the large deviation principle for trajectories ending at boundary points for random walks in space (time-independent) i.i.d. Dirichlet random environment in dimension d = 2 for a class of asymptotic behavior of the parameters.
dc.fuente.origenWOS
dc.identifier.doi10.1214/22-EJP786
dc.identifier.issn1083-6489
dc.identifier.urihttps://doi.org/10.1214/22-EJP786
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/93390
dc.identifier.wosidWOS:000800640900001
dc.language.isoen
dc.revistaElectronic journal of probability
dc.rightsacceso restringido
dc.subjectrandom walk in random environment
dc.subjectbeta random walk
dc.subjectGUE Tracy-Widom distribu-tion
dc.titleSecond order cubic corrections of large deviations for perturbed random walks*
dc.typeartículo
dc.volumen27
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files