Multiband embeddings of light curves

dc.catalogadordfo
dc.contributor.authorBecker Troncoso, Ignacio Eduardo Pablo
dc.contributor.authorProtopapas, P.
dc.contributor.authorCatelan, Márcio
dc.contributor.authorPichara, K.
dc.date.accessioned2025-03-12T19:10:57Z
dc.date.available2025-03-12T19:10:57Z
dc.date.issued2025
dc.description.abstractIn this work, we propose a novel ensemble of recurrent neural networks (RNNs) that considers the multiband and non-uniform cadence without having to compute complex features. Our proposed model consists of an ensemble of RNNs, which do not require the entire light curve to perform inference, making the inference process simpler. The ensemble is able to adapt to varying numbers of bands, tested on three real light curve datasets, namely Gaia, Pan-STARRS1, and ZTF, to demonstrate its potential for generalization. We also show the capabilities of deep learning to perform not only classification, but also regression of physical parameters such as effective temperature and radius. Our ensemble model demonstrates superior performance in scenarios with fewer observations, thus providing potential for early classification of sources from facilities such as Vera C. Rubin Observatory's LSST. The results underline the model's effectiveness and flexibility, making it a promising tool for future astronomical surveys. Our research has shown that a multitask learning approach can enrich the embeddings obtained by the models, making them instrumental to solve additional tasks, such as determining the orbital parameters of binary systems or estimating parameters for object types beyond periodic ones.
dc.fechaingreso.objetodigital2025-03-12
dc.format.extent15 páginas
dc.fuente.origenWOS
dc.identifier.doi10.1051/0004-6361/202347461
dc.identifier.eissn1432-0746
dc.identifier.issn0004-6361
dc.identifier.urihttps://doi.org/10.1051/0004-6361/202347461
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/102536
dc.identifier.wosidWOS:001420194600008
dc.information.autorucEscuela de Ingeniería; Becker Troncoso Ignacio Eduardo Pablo; S/I; 170384
dc.information.autorucInstituto de Física; Catelan Marcio; 0000-0001-6003-8877; 1001556
dc.language.isoen
dc.nota.accesoContenido completo
dc.revistaAstronomy & Astrophysics
dc.rightsacceso abierto
dc.rights.licenseAtribución/Reconocimiento 4.0 Internacional
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/deed.es
dc.subjectMethods: data analysis
dc.subjectAstronomical databases: miscellaneous
dc.subjectStars: variables: general
dc.subject.ddc520
dc.subject.deweyAstronomíaes_ES
dc.titleMultiband embeddings of light curves
dc.typeartículo
dc.volumen694
sipa.codpersvinculados170384
sipa.codpersvinculados1001556
sipa.trazabilidadWOS;2025-03-01
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
aa47461-23.pdf
Size:
5.41 MB
Format:
Adobe Portable Document Format
Description: