On degenerations of Z/2-Godeaux surfaces

dc.contributor.authorDias, Eduardo
dc.contributor.authorRito, Carlos
dc.contributor.authorUrzua, Giancarlo
dc.date.accessioned2025-01-20T21:00:54Z
dc.date.available2025-01-20T21:00:54Z
dc.date.issued2022
dc.description.abstractWe compute equations for the Coughlan's family of Godeaux surfaces with torsion Z/2, which we call Z/2-Godeaux surfaces, and we show that it is (at most) 7 dimensional. We classify all non-rational KSBA degenerations W of Z/2-Godeaux surfaces with one Wahl singularity, showing that W is birational to particular either Enriques surfaces, or D-2,D-n elliptic surfaces, with n = 3, 4 or 6. We present examples for all possibilities in the first case, and for n = 3, 4 in the second.
dc.fuente.origenWOS
dc.identifier.doi10.4171/RMI/1376
dc.identifier.issn0213-2230
dc.identifier.urihttps://doi.org/10.4171/RMI/1376
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/92770
dc.identifier.wosidWOS:000917913600002
dc.issue.numero5
dc.language.isoen
dc.pagina.final1423
dc.pagina.inicio1399
dc.revistaRevista matematica iberoamericana
dc.rightsacceso restringido
dc.titleOn degenerations of Z/2-Godeaux surfaces
dc.typeartículo
dc.volumen38
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files