Effects of Regional Stress State and Pore Fluid Pressure on the Onset and Style of Caldera Collapse

dc.catalogadorjlo
dc.contributor.authorVillarroel Lastra, Matías Andrés
dc.contributor.authorSchöpfer, Martin P. J.
dc.contributor.authorBrowning, John
dc.contributor.authorHolohan, Eoghan P.
dc.contributor.authorHarnett, Claire E.
dc.contributor.authorMarquardt Román, Carlos Jorge
dc.contributor.authorJara, Pamela P.
dc.date.accessioned2025-08-27T20:11:08Z
dc.date.available2025-08-27T20:11:08Z
dc.date.issued2025
dc.description.abstractCollapse calderas result from subsidence of a magma reservoir roof during large-volume eruptions. Whilst calderas form in various tectonic settings, it is unclear how regional (“far-field”) forces influence caldera fault nucleation, orientation and architecture. Furthermore, although the presence of a pore fluid is known to reduce the effective stress, it is typically neglected in past caldera collapse models. Utilizing two-dimensional Distinct Element Method (DEM) models, we explore the influences of regional stress and pore fluid pressure on the evolutions of stress, strain and faulting during caldera subsidence. We simulate a shallow magma volume as an inviscid inclusion within a homogeneous crust and decrease the inclusion's pressure to model magma withdrawal. Results reveal that the critical underpressure needed to trigger collapse is reduced in extensional regimes, particularly in fluid-saturated conditions, due to lowered frictional resistance on faults. We observe three progressive deformation stages: initial fracturing at the reservoir roof, collapse onset, and complete roof failure. The geometry of faults depends on the tectonic setting, with extensional conditions favoring steeper fault dips and compressional settings promoting shallower, outward-dipping reverse faults. Models simulating a fluid-saturated crust exhibit similar effects to those models that simulate lower strength materials. This study highlights the need to account for regional stress states and crustal properties in volcanic hazard assessment, especially in caldera systems with complex hydrothermal or tectonic influences. Our findings are compared with recent collapse episodes, underscoring the utility of DEM modeling in understanding crustal responses to magma depletion.
dc.fechaingreso.objetodigital2025-08-27
dc.format.extent21 páginas
dc.fuente.origenORCID
dc.identifier.doi10.1029/2024JB031054
dc.identifier.scopusidSCOPUS_ID:105005467609
dc.identifier.urihttps://doi.org/10.1029/2024JB031054
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/105323
dc.identifier.wosidWOS:001490943900001
dc.information.autorucEscuela de Ingeniería; Villarroel Lastra, Matías Andrés; S/I; 1131980
dc.information.autorucEscuela de Ingeniería; Browning, John; 0000-0001-8022-6234; 1081089
dc.information.autorucEscuela de Ingeniería; Marquardt Román, Carlos Jorge; 0000-0002-8571-5931; 1012334
dc.language.isoen
dc.nota.accesocontenido completo
dc.revistaJGR Solid Earth
dc.rightsacceso abierto
dc.rights.licenseCC BY-NC-ND 4.0 Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc550
dc.subject.deweyCiencias de la tierraes_ES
dc.titleEffects of Regional Stress State and Pore Fluid Pressure on the Onset and Style of Caldera Collapse
dc.typeartículo
dc.volumen130
sipa.codpersvinculados1131980
sipa.codpersvinculados1081089
sipa.codpersvinculados1012334
sipa.trazabilidadORCID;2025-05-19
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
JGR Solid Earth - 2025 - Villarroel - Effects of Regional Stress State and Pore Fluid Pressure on the Onset and Style of.pdf
Size:
6 MB
Format:
Adobe Portable Document Format
Description: