Green Hydrogen Cogeneration Through Solid-Particle Concentrated Solar Power System Integrated With Proton Exchange Membrane Stacks
Loading...
Date
2025
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This paper presents a techno-economic analysis of third-generation (Gen3) Concentrated Solar Power (CSP) systems using solid particles and Proton Exchange Membrane (PEM) stacks for green hydrogen production. The study assesses the Levelized Cost of Hydrogen (LCOH2) as a key metric. A 100 MWe CSP plant can achieve a LCOE of 55-60 $/MWh, with a Solar Multiple (SM) of 3 and Thermal Energy Storage (TES) capacity between 7 h and 16 h. Results show that a 1:1 ratio between PEM and CSP capacities is not needed to optimize hydrogen production, enabling hybrid schemes for electricity and hydrogen co-generation. However, the achieved LCOH2 does not meet IEA’s 2030 target of below 4 $/kg-H2. Key challenges include reducing PEM costs for large-scale applications and ensuring a cost of electricity below 55 $/MWh. Addressing these issues will be crucial for the economic viability of Gen3 CSP+PEM systems in the transition to sustainable hydrogen production.
Description
Keywords
Green Hydrogen, Solid Particles, Concentrated Solar Power, Cogeneration