Discrete spectrum of quantum Hall effect Hamiltonians II: Periodic edge potentials
dc.contributor.author | Miranda, Pablo | |
dc.contributor.author | Raikov, Georgi | |
dc.date.accessioned | 2024-01-10T12:04:57Z | |
dc.date.available | 2024-01-10T12:04:57Z | |
dc.date.issued | 2012 | |
dc.description.abstract | We consider the unperturbed operator H-0 := (-i del-A)(2) + W, self-adjoint in L-2(R-2). Here A is a magnetic potential which generates a constant magnetic field b > 0, and the edge potential W = (W) over bar is a T-periodic non-constant bounded function depending only on the first coordinate x is an element of R of (x, y) is an element of R-2. Then the spectrum sigma(H-0) of H-0 has a band structure, the band functions are bT-periodic, and generically there are infinitely many open gaps in sigma(H-0). We establish explicit sufficient conditions which guarantee that a given band of sigma(H-0) has a positive length, and all the extremal points of the corresponding band function are non-degenerate. Under these assumptions we consider the perturbed operators H-+/- = H-0 +/- V where the electric potential V is an element of L-infinity(R-2) is non-negative and decays at infinity. We investigate the asymptotic distribution of the discrete spectrum of H-+/- in the spectral gaps of H-0. We introduce an effective Hamiltonian which governs the main asymptotic term; this Hamiltonian could be interpreted as a 1D Schrodinger operator with infinite-matrix-valued potential. Further, we restrict our attention on perturbations V of compact support. We find that there are infinitely many discrete eigenvalues in any open gap in the spectrum sigma(H-0), and the convergence of these eigenvalues to the corresponding spectral edge is asymptotically Gaussian. | |
dc.description.funder | Chilean Science Foundation Fondecyt | |
dc.description.funder | Nucleo Cientifico ICM | |
dc.fechaingreso.objetodigital | 2024-05-23 | |
dc.format.extent | 21 páginas | |
dc.fuente.origen | WOS | |
dc.identifier.doi | 10.3233/ASY-2012-1103 | |
dc.identifier.issn | 0921-7134 | |
dc.identifier.uri | https://doi.org/10.3233/ASY-2012-1103 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/75917 | |
dc.identifier.wosid | WOS:000309213900006 | |
dc.information.autoruc | Matemática;Raikov G;S/I;1004967 | |
dc.issue.numero | 3-4 | |
dc.language.iso | en | |
dc.nota.acceso | contenido parcial | |
dc.pagina.final | 345 | |
dc.pagina.inicio | 325 | |
dc.publisher | IOS PRESS | |
dc.revista | ASYMPTOTIC ANALYSIS | |
dc.rights | acceso restringido | |
dc.subject | magnetic Schrodinger operators | |
dc.subject | spectral gaps | |
dc.subject | eigenvalue distribution | |
dc.subject | RANDOM LANDAU HAMILTONIANS | |
dc.subject | CONSTANT MAGNETIC-FIELDS | |
dc.subject | SCHRODINGER-OPERATORS | |
dc.subject | ASYMPTOTICS | |
dc.subject.ods | 04 Quality Education | |
dc.subject.odspa | 04 Educación y calidad | |
dc.title | Discrete spectrum of quantum Hall effect Hamiltonians II: Periodic edge potentials | |
dc.type | artículo | |
dc.volumen | 79 | |
sipa.codpersvinculados | 1004967 | |
sipa.index | WOS | |
sipa.trazabilidad | Carga SIPA;09-01-2024 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 2024-05-23. Discrete spectrum of quantum Hall effect Hamiltonians II - Periodic edge potentials.pdf
- Size:
- 3.17 KB
- Format:
- Adobe Portable Document Format
- Description: