The ATLAS Virtual Research Assistant

dc.article.number201
dc.catalogadorgjm
dc.contributor.authorStevance, H. F.
dc.contributor.authorSmith, K. W.
dc.contributor.authorSmartt, S. J.
dc.contributor.authorRoberts, S. J.
dc.contributor.authorErasmus, N.
dc.contributor.authorYoung, D. R.
dc.contributor.authorClocchiatti, Alejandro
dc.date.accessioned2025-11-21T14:58:55Z
dc.date.available2025-11-21T14:58:55Z
dc.date.issued2025
dc.description.abstractWe present the Virtual Research Assistant (VRA) of the ATLAS sky survey, which performs preliminary eyeballing on our clean transient data stream. The VRA uses histogram-based gradient-boosted decision tree classifiers trained on real data to score incoming alerts on two axes: "Real" and "Galactic." The alerts are then ranked using a geometric distance such that the most "real" and "extragalactic" receive high scores; the scores are updated when new lightcurve data is obtained on subsequent visits. To assess the quality of the training we use the recall at rank K, which is more informative to our science goal than general metrics (e.g., accuracy, F1-scores). We also establish benchmarks for our metric based on the pre-VRA eyeballing strategy, to ensure our models provide notable improvements before being added to the ATLAS pipeline. Then, policies are defined on the ranked list to select the most promising alerts for humans to eyeball and to automatically remove bogus alerts. In production the VRA method has resulted in a reduction in eyeballing workload by 85% with a loss of follow-up opportunity <0.08%. It also allows us to automatically trigger follow-up observations with the Lesedi telescope, paving the way toward automated methods that will be required in the era of LSST. Finally, this is a demonstration that feature-based methods remain extremely relevant in our field, being trainable on only a few thousand samples and highly interpretable; they also offer a direct way to inject expertise into models through feature engineering....
dc.fechaingreso.objetodigital2025-11-21
dc.format.extent23 páginas
dc.fuente.origenORCID
dc.identifier.doi10.3847/1538-4357/adf2a1
dc.identifier.urihttps://doi.org/10.3847/1538-4357/adf2a1
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/107076
dc.information.autorucInstituto de Astrofísica; Clocchiatti, Alejandro; 0000-0003-3068-4258; 100500
dc.issue.numero2
dc.language.isoen
dc.nota.accesocontenido completo
dc.revistaThe Astrophysical Journal
dc.rightsacceso abierto
dc.rights.licenseCC BY 4.0 Attribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectSky surveys
dc.subjectTransient detection
dc.subjectAstrostatistics
dc.subjectInterdisciplinary astronomy
dc.subjectAstroinformatics
dc.subject.ddc520
dc.subject.deweyAstronomíaes_ES
dc.titleThe ATLAS Virtual Research Assistant
dc.typeartículo
dc.volumen990
sipa.codpersvinculados100500
sipa.trazabilidadORCID;2025-11-17
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Stevance_2025_ApJ_990_201.pdf
Size:
7.54 MB
Format:
Adobe Portable Document Format
Description: