Characterization of perchlorate desorption and regeneration of the highly selective ion-exchange resin A530E using 1-butyl-3-methylimidazole chloride, 1-butyl-3-methylimidazole hydroxide, and choline chloride
No Thumbnail Available
Date
2025
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Perchlorate is an endocrine disruptor considered an emerging contaminant that poses risks to human health and the environment. Using selective resins is a cost-effective and reliable method for removing perchlorate from drinking water, yet regenerating these resins remains challenging. This study investigates the desorption of perchlorate from a highly selective ion-exchange resin (A530E) using 1-butyl-3-methylimidazole chloride ([Bmim][Cl]), 1-butyl-3-methylimidazole hydroxide ([Bmim][OH]), and choline chloride ([Chl][Cl]). Through three consecutive desorption cycles, [Bmim][OH] exhibited superior performance, achieving up to 23.48 mg·g−1 perchlorate desorption and recovery of nearly 22 % of the resin’s initial adsorption capacity in the second cycle, doubling the yields of the other treatments. Nevertheless, overall regeneration efficiency remained below 50 %, underscoring the need to optimize regenerative strategies. Fourier-transform infrared (FT-IR) spectroscopy indicates specific interactions between the organic salts, perchlorate, and functional groups of the resin. In contrast, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM/EDX) revealed notable changes in surface chemistry and morphology upon desorption. This study demonstrates that the ionic liquids used here can be effective desorption agents for removing perchlorate loaded from resins, thus offering a pathway for applying alternative solutions in water treatment.
Description
Keywords
Emerging contaminants, PerchlorateIon-exchange resin, Organic salts, Ionic liquids, And desorption