Almost Sure Recovery in Quasi-periodic Structures

dc.contributor.authorPetrache, Mircea
dc.contributor.authorViera, Rodolfo
dc.date.accessioned2025-01-20T20:19:45Z
dc.date.available2025-01-20T20:19:45Z
dc.date.issued2023
dc.description.abstractWe study random perturbations of quasi-periodic uniformly discrete sets in the d-dimensional euclidean space. By means of Diffraction Theory, we find conditions under which a quasi-periodic set X can be almost surely recovered from its random perturbations. This extends the recent periodic case result of Yakir (Int Math Res Notices 1-19, 2020).
dc.fuente.origenWOS
dc.identifier.doi10.1007/s10955-022-03059-2
dc.identifier.eissn1572-9613
dc.identifier.issn0022-4715
dc.identifier.urihttps://doi.org/10.1007/s10955-022-03059-2
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/92542
dc.identifier.wosidWOS:000904905400001
dc.issue.numero2
dc.language.isoen
dc.revistaJournal of statistical physics
dc.rightsacceso restringido
dc.subjectUniformly discrete set
dc.subjectQuasi-crystals
dc.subjectMathematical diffraction
dc.subjectStationary process
dc.subjectMixing
dc.titleAlmost Sure Recovery in Quasi-periodic Structures
dc.typeartículo
dc.volumen190
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files