Almost Sure Recovery in Quasi-periodic Structures
dc.contributor.author | Petrache, Mircea | |
dc.contributor.author | Viera, Rodolfo | |
dc.date.accessioned | 2025-01-20T20:19:45Z | |
dc.date.available | 2025-01-20T20:19:45Z | |
dc.date.issued | 2023 | |
dc.description.abstract | We study random perturbations of quasi-periodic uniformly discrete sets in the d-dimensional euclidean space. By means of Diffraction Theory, we find conditions under which a quasi-periodic set X can be almost surely recovered from its random perturbations. This extends the recent periodic case result of Yakir (Int Math Res Notices 1-19, 2020). | |
dc.fuente.origen | WOS | |
dc.identifier.doi | 10.1007/s10955-022-03059-2 | |
dc.identifier.eissn | 1572-9613 | |
dc.identifier.issn | 0022-4715 | |
dc.identifier.uri | https://doi.org/10.1007/s10955-022-03059-2 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/92542 | |
dc.identifier.wosid | WOS:000904905400001 | |
dc.issue.numero | 2 | |
dc.language.iso | en | |
dc.revista | Journal of statistical physics | |
dc.rights | acceso restringido | |
dc.subject | Uniformly discrete set | |
dc.subject | Quasi-crystals | |
dc.subject | Mathematical diffraction | |
dc.subject | Stationary process | |
dc.subject | Mixing | |
dc.title | Almost Sure Recovery in Quasi-periodic Structures | |
dc.type | artículo | |
dc.volumen | 190 | |
sipa.index | WOS | |
sipa.trazabilidad | WOS;2025-01-12 |