Uniqueness of entire graphs evolving by mean curvature flow

dc.catalogadorgjm
dc.contributor.authorPanagiota Daskalopoulos
dc.contributor.authorSaez Trumper, Mariel Ines Aura
dc.date.accessioned2024-02-02T13:58:43Z
dc.date.available2024-02-02T13:58:43Z
dc.date.issued2022
dc.description.abstractAbstract In this paper we study the uniqueness of graphical mean curvature flow with locally Lipschitz initial data. We first prove that rotationally symmetric entire graphs are unique, without any further assumptions. Our methods also give an alternative simple proof of uniqueness in the one-dimensional case. In the general case, we establish the uniqueness of entire proper graphs that satisfy a uniform lower bound on the second fundamental form. The latter result extends to initial conditions that are proper graphs over subdomains of ℝ n {\mathbb{R}^{n}} . A consequence of our result is the uniqueness of convex entire graphs, which allow us to prove that Hamilton’s Harnack estimate holds for mean curvature flow solutions that are convex entire graphs.
dc.fuente.origenORCID
dc.identifier.doi10.48550/arxiv.2110.12026
dc.identifier.urihttps://doi.org/10.1515/crelle-2022-0085
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/81263
dc.information.autorucFacultad de Matemáticas; Saez Trumper, Mariel Ines Aura; 0000-0002-3787-9990; 1006522
dc.language.isoen
dc.nota.accesocontenido completo
dc.rightsacceso abierto
dc.titleUniqueness of entire graphs evolving by mean curvature flow
dc.typepreprint
sipa.codpersvinculados1006522
sipa.trazabilidadORCID;2024-01-22
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Uniqueness of entire graphs evolving by mean curvature flow.pdf
Size:
2.46 KB
Format:
Adobe Portable Document Format
Description: