Analysis of a stabilized penalty-free nitsche method for the brinkman, stokes, and darcy problems

dc.contributor.authorBlank, Laura
dc.contributor.authorCaiazzo, Alfonso
dc.contributor.authorChouly, Franz
dc.contributor.authorLozinski, Alexei
dc.contributor.authorMura Mardones, JoaquĆ­n Alejandro
dc.date.accessioned2019-10-07T16:24:06Z
dc.date.available2019-10-07T16:24:06Z
dc.date.issued2019
dc.fuente.origenConveris
dc.identifier.doi10.1051/m2an/2018063
dc.identifier.issn0764-583X
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/26400
dc.identifier.urihttps://doi.org/10.1051/m2an/2018063
dc.identifier.wosidWOS:000457984700002
dc.issue.numeroNo. 6
dc.language.isoen
dc.nota.accesoContenido parcial
dc.pagina.final598
dc.pagina.inicio581
dc.revistaESAIM: Mathematical Modelling and Numerical Analysises_ES
dc.rightsacceso restringido
dc.subjectBrinkman problemes_ES
dc.subjectPenalty-free Nitsche methodes_ES
dc.subjectWeak boundary conditionses_ES
dc.subjectStabilized finite elementses_ES
dc.subject.ddc620
dc.subject.deweyIngenierĆ­aes_ES
dc.titleAnalysis of a stabilized penalty-free nitsche method for the brinkman, stokes, and darcy problemses_ES
dc.typeartĆ­culo
dc.volumenVol. 52
sipa.codpersvinculados9973
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Brinkman_P1P1_HAL.pdf
Size:
1.29 MB
Format:
Adobe Portable Document Format
Description: