Mobius parametrizations of curves in R-n

dc.contributor.authorChuaqui, Martin
dc.date.accessioned2024-01-10T13:14:56Z
dc.date.available2024-01-10T13:14:56Z
dc.date.issued2009
dc.description.abstractWe use Ahlfors' definition of Schwarzian derivative for curves in euclidean spaces to present new results about Mobius or projective parametrizations. The class of such parametrizations is invariant under compositions with Mobius transformations, and the resulting curves are simple. The analysis is based on the oscillatory behavior of the associated linear equation u '' + 1/4k(2)u = 0, where k = k(s) is the curvature as a function of arclength.
dc.description.funderFondecyt
dc.fechaingreso.objetodigital2024-04-15
dc.format.extent11 páginas
dc.fuente.origenWOS
dc.identifier.doi10.1007/s00013-009-3116-3
dc.identifier.issn0003-889X
dc.identifier.urihttps://doi.org/10.1007/s00013-009-3116-3
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/78454
dc.identifier.wosidWOS:000267214700009
dc.information.autorucMatemática;Chuaqui M;S/I;75421
dc.issue.numero6
dc.language.isoen
dc.nota.accesocontenido parcial
dc.pagina.final636
dc.pagina.inicio626
dc.publisherBIRKHAUSER VERLAG AG
dc.revistaARCHIV DER MATHEMATIK
dc.rightsacceso restringido
dc.subjectAhlfors' Schwarzian
dc.subjectprojective structure
dc.subjectsimple curves
dc.subjectcurvature
dc.subjectMobius
dc.subjectoscillation
dc.titleMobius parametrizations of curves in R-n
dc.typeartículo
dc.volumen92
sipa.codpersvinculados75421
sipa.indexWOS
sipa.trazabilidadCarga SIPA;09-01-2024
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mobius parametrizations of curves in R-n.pdf
Size:
2.25 KB
Format:
Adobe Portable Document Format
Description: