A balanced finite-element method for an axisymmetrically loaded thin shell
dc.contributor.author | Heuer, Norbert | |
dc.contributor.author | Linss, Torsten | |
dc.date.accessioned | 2025-01-20T17:09:04Z | |
dc.date.available | 2025-01-20T17:09:04Z | |
dc.date.issued | 2024 | |
dc.description.abstract | We analyse a finite-element discretisation of a differential equation describing an axisymmetrically loaded thin shell. The problem is singularly perturbed when the thickness of the shell becomes small. We prove robust convergence of the method in a balanced norm that captures the layers present in the solution. Numerical results confirm our findings. | |
dc.fuente.origen | WOS | |
dc.identifier.doi | 10.21136/AM.2024.0134-23 | |
dc.identifier.eissn | 1572-9109 | |
dc.identifier.issn | 0862-7940 | |
dc.identifier.uri | https://doi.org/10.21136/AM.2024.0134-23 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/91009 | |
dc.identifier.wosid | WOS:001160690800001 | |
dc.issue.numero | 2 | |
dc.language.iso | en | |
dc.pagina.final | 168 | |
dc.pagina.inicio | 151 | |
dc.revista | Applications of mathematics | |
dc.rights | acceso restringido | |
dc.subject | axisymmetrically loaded thin shell | |
dc.subject | singular perturbation | |
dc.subject | balanced norm | |
dc.subject | layer-adapted meshes | |
dc.subject | finite element method | |
dc.title | A balanced finite-element method for an axisymmetrically loaded thin shell | |
dc.type | artículo | |
dc.volumen | 69 | |
sipa.index | WOS | |
sipa.trazabilidad | WOS;2025-01-12 |