Beyond the Trudinger-Moser supremum
dc.contributor.author | del Pino, Manuel | |
dc.contributor.author | Musso, Monica | |
dc.contributor.author | Ruf, Bernhard | |
dc.date.accessioned | 2025-01-20T23:58:18Z | |
dc.date.available | 2025-01-20T23:58:18Z | |
dc.date.issued | 2012 | |
dc.description.abstract | Let Omega be a bounded, smooth domain in R-2. We consider the functional | |
dc.description.abstract | I(u) = integral(Omega)e(u2) dx | |
dc.description.abstract | in the supercritical Trudinger-Moser regime, i.e. for integral(Omega)|del u|(2)dx > 4 pi. More precisely, we are looking for critical points of I(u) in the class of functions u is an element of H-0(1) (Omega) such that integral(Omega)|del u|(2)dx = 4 pi k (1+ alpha), for smalla alpha > 0. In particular, we prove the existence of 1-peak critical points of I(u) with integral(Omega)|del u|(2)dx = 4 pi(1 + alpha) for any bounded domain Omega, 2-peak critical points with integral(Omega)|del u|(2)dx = 8 pi(1 + alpha) for non-simply connected domains Omega, and k-peak critical points with integral(Omega)|del u|(2)dx = 4kp(1 + alpha) if Omega is an annulus. | |
dc.fuente.origen | WOS | |
dc.identifier.doi | 10.1007/s00526-011-0444-5 | |
dc.identifier.eissn | 1432-0835 | |
dc.identifier.issn | 0944-2669 | |
dc.identifier.uri | https://doi.org/10.1007/s00526-011-0444-5 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/95242 | |
dc.identifier.wosid | WOS:000303534200009 | |
dc.issue.numero | 3-4 | |
dc.language.iso | en | |
dc.pagina.final | 576 | |
dc.pagina.inicio | 543 | |
dc.revista | Calculus of variations and partial differential equations | |
dc.rights | acceso restringido | |
dc.title | Beyond the Trudinger-Moser supremum | |
dc.type | artículo | |
dc.volumen | 44 | |
sipa.index | WOS | |
sipa.trazabilidad | WOS;2025-01-12 |