Beyond the Trudinger-Moser supremum

dc.contributor.authordel Pino, Manuel
dc.contributor.authorMusso, Monica
dc.contributor.authorRuf, Bernhard
dc.date.accessioned2025-01-20T23:58:18Z
dc.date.available2025-01-20T23:58:18Z
dc.date.issued2012
dc.description.abstractLet Omega be a bounded, smooth domain in R-2. We consider the functional
dc.description.abstractI(u) = integral(Omega)e(u2) dx
dc.description.abstractin the supercritical Trudinger-Moser regime, i.e. for integral(Omega)|del u|(2)dx > 4 pi. More precisely, we are looking for critical points of I(u) in the class of functions u is an element of H-0(1) (Omega) such that integral(Omega)|del u|(2)dx = 4 pi k (1+ alpha), for smalla alpha > 0. In particular, we prove the existence of 1-peak critical points of I(u) with integral(Omega)|del u|(2)dx = 4 pi(1 + alpha) for any bounded domain Omega, 2-peak critical points with integral(Omega)|del u|(2)dx = 8 pi(1 + alpha) for non-simply connected domains Omega, and k-peak critical points with integral(Omega)|del u|(2)dx = 4kp(1 + alpha) if Omega is an annulus.
dc.fuente.origenWOS
dc.identifier.doi10.1007/s00526-011-0444-5
dc.identifier.eissn1432-0835
dc.identifier.issn0944-2669
dc.identifier.urihttps://doi.org/10.1007/s00526-011-0444-5
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/95242
dc.identifier.wosidWOS:000303534200009
dc.issue.numero3-4
dc.language.isoen
dc.pagina.final576
dc.pagina.inicio543
dc.revistaCalculus of variations and partial differential equations
dc.rightsacceso restringido
dc.titleBeyond the Trudinger-Moser supremum
dc.typeartículo
dc.volumen44
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files