The boundary element method for acoustic transmission with nonconforming grids

dc.contributor.authorvan 't Wout, Elwin
dc.date.accessioned2025-01-20T17:06:16Z
dc.date.available2025-01-20T17:06:16Z
dc.date.issued2024
dc.description.abstractAcoustic wave propagation through a homogeneous material embedded in an unbounded medium can be formulated as a boundary integral equation and accurately solved with the boundary element method. The computational efficiency deteriorates at high frequencies due to the increase in mesh size with a fixed number of elements per wavelength and also at high material contrasts due to the ill -conditioning of the linear system. This study presents the design of boundary element methods feasible for nonconforming surface meshes at the material interface. The nonconforming algorithm allows for independent grid generation, improves flexibility, and reduces the degrees of freedom. It works for different boundary integral formulations for Helmholtz transmission problems, operator preconditioning, and coupling with finite element solvers. The extensive numerical benchmarks at canonical configurations and an acoustic foam model confirm the significant improvements in computational efficiency when employing the nonconforming grid coupling in the boundary element method.
dc.description.funderAgencia Nacional de Investigacin y Desarrollo, Chile [FONDECYT]
dc.fuente.origenWOS
dc.identifier.doi10.1016/j.cam.2024.115838
dc.identifier.eissn1879-1778
dc.identifier.issn0377-0427
dc.identifier.urihttps://doi.org/10.1016/j.cam.2024.115838
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/90770
dc.identifier.wosidWOS:001199895300001
dc.language.isoen
dc.revistaJournal of computational and applied mathematics
dc.rightsacceso restringido
dc.subjectComputational acoustics
dc.subjectNonconforming grids
dc.subjectBoundary element method
dc.subjectFinite element method
dc.titleThe boundary element method for acoustic transmission with nonconforming grids
dc.typeartículo
dc.volumen445
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files