Enhanced mechanical and tribological performance of additively manufactured 316L steel by MoS2-reinforcement

dc.article.number113562
dc.catalogadorvdr
dc.contributor.authorRamteke R., Sangharatna Munneshwar
dc.contributor.authorRamos Grez, Jorge
dc.contributor.authorMarian, Max
dc.date.accessioned2025-03-17T13:24:50Z
dc.date.available2025-03-17T13:24:50Z
dc.date.issued2025
dc.description.abstract316L stainless steel is commonly used in industrial and biomedical applications due to its corrosion resistance and biocompatibility, though its wear resistance is limited. This study aims to enhance the wear performance of 316L using additive manufacturing (AM) via laser powder bed fusion (LPBF), reinforcing it with MoS2 particles. Metal matrix composites (MMCs) were fabricated with MoS2 particles of different combinations in size (1.5, 4.5, 12.5 µm) and concentration (1, 3, 5 wt-%). Increasing MoS2 content reduced the density across all particle sizes due to MoS2′s lower intrinsic density, with smaller particles increasing surface roughness and larger particles reducing roughness variation while enhancing hardness. Notable variations in the coefficient of friction and wear coefficients were observed across different composites and temperatures in a steel ball-on-three-MMC plate setup under dry conditions. At 25 °C, 4.5 µm MoS2 at 5 wt-% reduced MMC plates’ wear by 96.3 % and counter body (steel ball) wear by 85.5 %. At 37 °C, 12.5 µm MoS2 at 1 wt-% reduced plate wear by 97.1 % and ball wear by 91 %. These improvements were attributed to enhanced solid lubrication and load distribution, particularly with optimal MoS2 size and concentration. This research highlights the potential of LPBF-AM in producing high-performance 316L MMCs for applications requiring improved wear resistance.
dc.description.funderSchaeffler FAG Foundation
dc.description.funderANID/FONDECYT; Folios de beca: 3230027 y 180081
dc.description.funderFondecyt de Postdoctorado
dc.description.funderPontificia Universidad Católica de Chile, Vicerrectoría Académica (VRA)
dc.fechaingreso.objetodigitalNo aplica
dc.format.extent13 páginas
dc.fuente.origenSCOPUS
dc.identifier.doi10.1016/j.matdes.2024.113562
dc.identifier.eissn1873-4197
dc.identifier.issn18734197 02641275
dc.identifier.scopusidSCOPUS_ID:85212593283
dc.identifier.urihttp://dx.doi.org/10.1016/j.matdes.2024.113562
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/102649
dc.information.autorucEscuela de Ingeniería; Ramteke R., Sangharatna Munneshwar; 0000-0001-7533-7167; 1315678
dc.information.autorucEscuela de Ingeniería; Ramos Grez, Jorge; 0000-0002-9293-3275; 81538
dc.language.isoen
dc.nota.accesoSin adjunto
dc.pagina.final13
dc.pagina.inicio1
dc.revistaMaterials and Design
dc.rightsacceso abierto
dc.rightsacceso restringido
dc.subject2D materials
dc.subjectBiotribology
dc.subjectMetal matrix composite
dc.subjectTMD
dc.subjectTransition-metal dichalcogenide
dc.subject.ddc620
dc.subject.deweyIngenieríaes_ES
dc.subject.ods09 Industry, innovation and infrastructure
dc.subject.odspa09 Industria, innovación e infraestructura
dc.titleEnhanced mechanical and tribological performance of additively manufactured 316L steel by MoS2-reinforcement
dc.typeartículo
dc.volumen249
sipa.codpersvinculados1315678
sipa.codpersvinculados81538
sipa.trazabilidadSCOPUS;2025-01-05
Files