New solutions for Trudinger-Moser critical equations in R-2
dc.contributor.author | del Pino, Manuel | |
dc.contributor.author | Musso, Monica | |
dc.contributor.author | Ruf, Bernhard | |
dc.date.accessioned | 2024-01-10T13:15:31Z | |
dc.date.available | 2024-01-10T13:15:31Z | |
dc.date.issued | 2010 | |
dc.description.abstract | Let Omega be a bounded, smooth domain in R-2. We consider critical points of the Trudinger-Moser type functional J(lambda) (u) = 1/2 integral(Omega)vertical bar del u vertical bar(2) - lambda/2 integral(Omega)e(u2) in H-0(1)(Omega), namely solutions of the boundary value problem Delta u + lambda ue(u2) = 0 with homogeneous Dirichlet boundary conditions, where lambda > 0 is a small parameter. Given k >= 1 we find conditions under which there exists a solution u(lambda) which blows up at exactly k points in Omega as lambda -> 0 and J(lambda)(u(lambda)) -> 2k pi. We find that at least one such solution always exists if k = 2 and Omega is not simply connected. If Omega has d >= 1 holes, in addition d + 1 bubbling solutions with k = 1 exist. These results are existence counterparts of one by Druet in [O. Druet, Multibump analysis in dimension 2: Quantification of blow-up levels, Duke Math. J. 132 (2) (2006) 217-269] which classifies asymptotic bounded energy levels of blow-up solutions for a class of nonlinearities of critical exponential growth, including this one as a prototype case. (C) 2009 Elsevier Inc. All rights reserved. | |
dc.fechaingreso.objetodigital | 17-04-2024 | |
dc.format.extent | 37 páginas | |
dc.fuente.origen | WOS | |
dc.identifier.doi | 10.1016/j.jfa.2009.06.018 | |
dc.identifier.eissn | 1096-0783 | |
dc.identifier.issn | 0022-1236 | |
dc.identifier.uri | https://doi.org/10.1016/j.jfa.2009.06.018 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/78507 | |
dc.identifier.wosid | WOS:000272113100004 | |
dc.information.autoruc | Matemática;Musso M;S/I;1003201 | |
dc.issue.numero | 2 | |
dc.language.iso | en | |
dc.nota.acceso | contenido parcial | |
dc.pagina.final | 457 | |
dc.pagina.inicio | 421 | |
dc.publisher | ACADEMIC PRESS INC ELSEVIER SCIENCE | |
dc.revista | JOURNAL OF FUNCTIONAL ANALYSIS | |
dc.rights | acceso restringido | |
dc.subject | Trudinger-Moser inequality | |
dc.subject | Blowing-up solutions | |
dc.subject | Singular perturbations | |
dc.subject | ELLIPTIC-EQUATIONS | |
dc.subject | SINGULAR LIMITS | |
dc.subject | COMPACTNESS | |
dc.title | New solutions for Trudinger-Moser critical equations in R-2 | |
dc.type | artículo | |
dc.volumen | 258 | |
sipa.codpersvinculados | 1003201 | |
sipa.index | WOS | |
sipa.index | Scopus | |
sipa.trazabilidad | Carga SIPA;09-01-2024 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 2024-04-17. New solutions for Trudinger-Moser critical equations in R-2.pdf
- Size:
- 2.92 KB
- Format:
- Adobe Portable Document Format
- Description: