MULTILEVEL DECOMPOSITIONS AND NORMS FOR NEGATIVE ORDER SOBOLEV SPACES

dc.contributor.authorFuhrer, Thomas
dc.date.accessioned2025-01-20T22:01:24Z
dc.date.available2025-01-20T22:01:24Z
dc.date.issued2022
dc.description.abstractWe consider multilevel decompositions of piecewise constants on simplicial meshes that are stable in H-s for s is an element of (0, 1). Proofs are given in the case of uniformly and locally refined meshes. Our findings can be applied to define local multilevel diagonal preconditioners that lead to bounded condition numbers (independent of the mesh-sizes and levels) and have optimal computational complexity. Furthermore, we discuss multilevel norms based on local (quasi-)projection operators that allow the efficient evaluation of negative order Sobolev norms. Numerical examples and a discussion on several extensions and applications conclude this article.
dc.description.funderANID through FONDECYT
dc.fuente.origenWOS
dc.identifier.doi10.1090/mcom/3674
dc.identifier.eissn1088-6842
dc.identifier.issn0025-5718
dc.identifier.urihttps://doi.org/10.1090/mcom/3674
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/93824
dc.identifier.wosidWOS:000729863700007
dc.issue.numero333
dc.language.isoen
dc.pagina.final218
dc.pagina.inicio183
dc.revistaMathematics of computation
dc.rightsacceso restringido
dc.subjectAdditive Schwarz
dc.subjectmultilevel norms
dc.subjectsubspace decomposition
dc.subjectpreconditioner
dc.titleMULTILEVEL DECOMPOSITIONS AND NORMS FOR NEGATIVE ORDER SOBOLEV SPACES
dc.typeartículo
dc.volumen91
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files