MULTILEVEL DECOMPOSITIONS AND NORMS FOR NEGATIVE ORDER SOBOLEV SPACES
dc.contributor.author | Fuhrer, Thomas | |
dc.date.accessioned | 2025-01-20T22:01:24Z | |
dc.date.available | 2025-01-20T22:01:24Z | |
dc.date.issued | 2022 | |
dc.description.abstract | We consider multilevel decompositions of piecewise constants on simplicial meshes that are stable in H-s for s is an element of (0, 1). Proofs are given in the case of uniformly and locally refined meshes. Our findings can be applied to define local multilevel diagonal preconditioners that lead to bounded condition numbers (independent of the mesh-sizes and levels) and have optimal computational complexity. Furthermore, we discuss multilevel norms based on local (quasi-)projection operators that allow the efficient evaluation of negative order Sobolev norms. Numerical examples and a discussion on several extensions and applications conclude this article. | |
dc.description.funder | ANID through FONDECYT | |
dc.fuente.origen | WOS | |
dc.identifier.doi | 10.1090/mcom/3674 | |
dc.identifier.eissn | 1088-6842 | |
dc.identifier.issn | 0025-5718 | |
dc.identifier.uri | https://doi.org/10.1090/mcom/3674 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/93824 | |
dc.identifier.wosid | WOS:000729863700007 | |
dc.issue.numero | 333 | |
dc.language.iso | en | |
dc.pagina.final | 218 | |
dc.pagina.inicio | 183 | |
dc.revista | Mathematics of computation | |
dc.rights | acceso restringido | |
dc.subject | Additive Schwarz | |
dc.subject | multilevel norms | |
dc.subject | subspace decomposition | |
dc.subject | preconditioner | |
dc.title | MULTILEVEL DECOMPOSITIONS AND NORMS FOR NEGATIVE ORDER SOBOLEV SPACES | |
dc.type | artículo | |
dc.volumen | 91 | |
sipa.index | WOS | |
sipa.trazabilidad | WOS;2025-01-12 |