Quantifying Travel Time Impacts of Rainfall-Induced Cut-Slope Failures on Road Networks

Abstract
Rainfall-induced cut-slope failures are one of the main causes of traffic disruptions in road networks, consuming 30–50% of annual road maintenance budgets. Therefore, it is crucial to analyze how traffic disruptions, resulting from cut-slope failures, impact the overall operation of road networks. In addition, as climate change alters the precipitation patterns, the frequency of these phenomena is expected to increase. For these reasons, it is essential to develop a methodology, from a risk perspective, to understand and assess how cut-slope failures impact the normal operation of road networks. This article introduces a methodology to assess the risk of traffic disruption caused by rainfall-induced cutslope failure, in terms of Origin–Destination travel time increases. The methodology comprises three stages: (1) modeling the rainfall hazard, (2) estimating the road network’s vulnerability to slope instability, and (3) quantifying risk through resulting travel time increases. A case study was performed on a road network highly vulnerable to cut-slope failure in the Biobío Region of southern Chile. The analysis using the GIS-based software revealed that rainfalls lasting more than 12 h increase average travel times by 20%, with maximum increases of about 40% for 24 h rainfalls, affecting travel between the main cities in the Biobio region and the Concepción metropolitan area. These results may be criticalfor decision-makers to identify highly exposed and vulnerable road sections in order to recommend effective mitigation strategies to reduce the risk of cut slope failures.
Description
Keywords
Highway cut-slope, Risk assessment, Rainfall-induced landslide
Citation