High-order Galerkin method for Helmholtz and Laplace problems on multiple open arcs

dc.contributor.authorJerez-Hanckes, Carlos
dc.contributor.authorPinto, Jose
dc.date.accessioned2025-01-23T19:47:39Z
dc.date.available2025-01-23T19:47:39Z
dc.date.issued2020
dc.description.abstractWe present a spectral Galerkin numerical scheme for solving Helmholtz and Laplace problems with Dirichlet boundary conditions on a finite collection of open arcs in two-dimensional space. A boundary integral method is employed, giving rise to a first kind Fredholm equation whose variational form is discretized using weighted Chebyshev polynomials. Well-posedness of the discrete problems is established as well as algebraic or even exponential convergence rates depending on the regularities of both arcs and excitations. Our numerical experiments show the robustness of the method with respect to number of arcs and large wavenumber range. Moreover, we present a suitable compression algorithm that further accelerates computational times.
dc.fuente.origenWOS
dc.identifier.doi10.1051/m2an/2020017
dc.identifier.eissn1290-3841
dc.identifier.issn0764-583X
dc.identifier.urihttps://doi.org/10.1051/m2an/2020017
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/100399
dc.identifier.wosidWOS:000578636600002
dc.issue.numero6
dc.language.isoen
dc.pagina.final2009
dc.pagina.inicio1975
dc.revistaEsaim-mathematical modelling and numerical analysis-modelisation mathematique et analyse numerique
dc.rightsacceso restringido
dc.subjectBoundary integral equations
dc.subjectspectral methods
dc.subjectwave scattering problems
dc.subjectscreens problems
dc.subjectnon-Lipschitz domains
dc.titleHigh-order Galerkin method for Helmholtz and Laplace problems on multiple open arcs
dc.typeartículo
dc.volumen54
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files