Thermodynamic effects drive countergradient responses in the thermal performance of<i> Littorina</i><i> saxatilis</i> across latitude

dc.contributor.authorDwane, Christopher
dc.contributor.authorRezende, Enrico L.
dc.contributor.authorTills, Oliver
dc.contributor.authorGalindo, Juan
dc.contributor.authorRolan-Alvarez, Emilio
dc.contributor.authorRundle, Simon
dc.contributor.authorTruebano, Manuela
dc.date.accessioned2025-01-20T20:19:09Z
dc.date.available2025-01-20T20:19:09Z
dc.date.issued2023
dc.description.abstractThermal performance curves (TPCs) provide a powerful framework to assess the evolution of thermal sensitivity in populations exposed to divergent selection regimes across latitude. However, there is a lack of consensus regarding the extent to which physiological adjustments that compensate for latitudinal temperature variation (metabolic cold adaptation; MCA) may alter the shape of TPCs, including potential repercussion on upper thermal limits. To address this, we compared TPCs for cardiac activity in latitudinally-separated populations of the intertidal periwinkle Littorina saxatilis. We applied a non-linear TPC modelling approach to explore how different metrics governing the shape of TPCs varied systematically in response to local adaptation and thermal acclimation. Both critical upper limits, and the temperatures at which cardiac performance was maximised, were higher in the northernmost (cold-adapted) pop-ulation and displayed a countergradient latitudinal trend which was most pronounced following acclimation to low temperatures. We interpret this response as a knock-on consequence of increased standard metabolic rate in high lat-itude populations, indicating that physiological compensation associated with MCA may indirectly influence variation in upper thermal limits across latitude. Our study highlights the danger of assuming that variation in any one aspect of the TPC is adaptive without appropriate mechanistic and ecological context.
dc.fuente.origenWOS
dc.identifier.doi10.1016/j.scitotenv.2022.160877
dc.identifier.eissn1879-1026
dc.identifier.issn0048-9697
dc.identifier.urihttps://doi.org/10.1016/j.scitotenv.2022.160877
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/92506
dc.identifier.wosidWOS:000911793300001
dc.language.isoen
dc.revistaScience of the total environment
dc.rightsacceso restringido
dc.subjectCountergradient
dc.subjectLatitudinal gradients
dc.subjectThermal performance curve
dc.subjectThermodynamic effects
dc.subjectMetabolic cold adaptation
dc.subjectLocal adaptation
dc.subject.ods14 Life Below Water
dc.subject.ods13 Climate Action
dc.subject.ods15 Life on Land
dc.subject.odspa14 Vida submarina
dc.subject.odspa13 Acción por el clima
dc.subject.odspa15 Vida de ecosistemas terrestres
dc.titleThermodynamic effects drive countergradient responses in the thermal performance of<i> Littorina</i><i> saxatilis</i> across latitude
dc.typeartículo
dc.volumen863
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files