Discovery of the Low-Redshift Optical Afterglow of Grb 011121 and Its Progenitor Supernova Sn 2001ke1

dc.contributor.authorGarnavich, P.M.
dc.contributor.authorStanek, K.Z.
dc.contributor.authorWyrzykowski, L.
dc.contributor.authorInfante, L.
dc.contributor.authorBendek, E.
dc.contributor.authorBersier, D.
dc.contributor.authorHolland, S.T.
dc.contributor.authorJha, S.
dc.contributor.authorMatheson, T.
dc.contributor.authorKirshner, R.P.
dc.contributor.authorKrisciunas, K.
dc.contributor.authorPhillips, M.M.
dc.contributor.authorCarlberg, R.G.
dc.date.accessioned2017-04-11T14:43:43Z
dc.date.available2017-04-11T14:43:43Z
dc.date.issued2003
dc.description.abstractWe present the discovery and follow-up observations of the afterglow of the gamma-ray burst GRB 011121 and its associated supernova SN 2001ke. Images were obtained with the Optical Gravitational Lensing Experiment 1.3 m telescope in BVRI passbands, starting 10.3 hr after the burst. The temporal analysis of our early data indicates a steep decay, independent of wavelength, with F-nu proportional to t(-1.72+/-0.05). There is no evidence for a break in the light curve earlier than 2.5 days after the burst. The spectral energy distribution determined from the early broadband photometry is a power law with Fnu proportional to nu(-0.66+/-0.13) after correcting for a large reddening. Spectra obtained with the Magellan 6.5 m Baade telescope reveal narrow emission lines from the host galaxy that provide a redshift of z = 0.362 +/- 0.001 to the GRB. We also present late R - and J-band observations of the afterglow similar to7-17 days after the burst. The late-time photometry shows a large deviation from the initial decline, and our data combined with Hubble Space Telescope photometry provide strong evidence for a supernova peaking about 12 rest-frame days after the GRB. The first spectrum ever obtained of a GRB supernova at cosmological distance revealed a blue continuum. SN 2001ke was more blue near maximum than SN 1998bw and faded more quickly, which demonstrates that a range of properties are possible in supernovae that generate GRBs. The blue color is consistent with a supernova interacting with circumstellar gas, and this progenitor wind is also evident in the optical afterglow. This is the best evidence to date that classical, long GRBs are generated by core-collapse supernovae.
dc.fechaingreso.objetodigital2025-02-24
dc.fuente.origenWOS
dc.identifier.doi10.1086/344785
dc.identifier.issn0004-637X
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/18672
dc.identifier.wosidWOS:000180282700029
dc.language.isoen
dc.nota.accesocontenido completo
dc.relation.isformatofAstrophysical Journal. Vol. 582, no. 2 (2003), p. [924]-932
dc.revistaAstrophysical Journales_ES
dc.rightsacceso abierto
dc.subjectgamma rays : bursts
dc.subjectsupernovae : general
dc.subjectsupernovae : individual (SN 2001ke)
dc.subject.ddc520
dc.subject.deweyAstronomíaes_ES
dc.subject.otherAstronomía - Observacioneses_ES
dc.subject.otherSupernovas (Astronomía)es_ES
dc.subject.otherRayos gammaes_ES
dc.titleDiscovery of the Low-Redshift Optical Afterglow of Grb 011121 and Its Progenitor Supernova Sn 2001ke1es_ES
dc.typeartículo
dc.volumenVol. 582
sipa.codpersvinculados55248
sipa.indexWOS
Files