Spectral Properties of 2D Pauli Operators with Almost-Periodic Electromagnetic Fields

dc.contributor.authorBony, Jean-Francois
dc.contributor.authorEspinoza, Nicolas
dc.contributor.authorRaikov, Georgi
dc.date.accessioned2025-01-23T21:11:46Z
dc.date.available2025-01-23T21:11:46Z
dc.date.issued2019
dc.description.abstractWe consider a 2D Pauli operator with almost-periodic field b and electric potential V. First, we study the ergodic properties of H and show, in particular, that its discrete spectrum is empty if there exists a magnetic potential which generates the magnetic field b - b(0), where b(0) is the mean value of b. Next, we assume that V = 0, and investigate the zero modes of H. As expected, if b(0 )not equal 0, then generically dim Ker H = infinity. If b(0) = 0, then for each m is an element of N boolean OR {infinity}, we construct an almost-periodic b such that dim Ker H = m. This construction depends strongly on results concerning the asymptotic behavior of Dirichlet series, also obtained in the present article.
dc.fuente.origenWOS
dc.identifier.doi10.4171/PRIMS/55-3-1
dc.identifier.eissn1663-4926
dc.identifier.issn0034-5318
dc.identifier.urihttps://doi.org/10.4171/PRIMS/55-3-1
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/100918
dc.identifier.wosidWOS:000476648000001
dc.issue.numero3
dc.language.isoen
dc.pagina.final487
dc.pagina.inicio453
dc.revistaPublications of the research institute for mathematical sciences
dc.rightsacceso restringido
dc.subjectPauli operators
dc.subjectalmost-periodic functions
dc.subjectergodic operator families
dc.subjectzero modes
dc.subjectasymptotics of Dirichlet series
dc.titleSpectral Properties of 2D Pauli Operators with Almost-Periodic Electromagnetic Fields
dc.typeartículo
dc.volumen55
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files