Spectral Properties of 2D Pauli Operators with Almost-Periodic Electromagnetic Fields
dc.contributor.author | Bony, Jean-Francois | |
dc.contributor.author | Espinoza, Nicolas | |
dc.contributor.author | Raikov, Georgi | |
dc.date.accessioned | 2025-01-23T21:11:46Z | |
dc.date.available | 2025-01-23T21:11:46Z | |
dc.date.issued | 2019 | |
dc.description.abstract | We consider a 2D Pauli operator with almost-periodic field b and electric potential V. First, we study the ergodic properties of H and show, in particular, that its discrete spectrum is empty if there exists a magnetic potential which generates the magnetic field b - b(0), where b(0) is the mean value of b. Next, we assume that V = 0, and investigate the zero modes of H. As expected, if b(0 )not equal 0, then generically dim Ker H = infinity. If b(0) = 0, then for each m is an element of N boolean OR {infinity}, we construct an almost-periodic b such that dim Ker H = m. This construction depends strongly on results concerning the asymptotic behavior of Dirichlet series, also obtained in the present article. | |
dc.fuente.origen | WOS | |
dc.identifier.doi | 10.4171/PRIMS/55-3-1 | |
dc.identifier.eissn | 1663-4926 | |
dc.identifier.issn | 0034-5318 | |
dc.identifier.uri | https://doi.org/10.4171/PRIMS/55-3-1 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/100918 | |
dc.identifier.wosid | WOS:000476648000001 | |
dc.issue.numero | 3 | |
dc.language.iso | en | |
dc.pagina.final | 487 | |
dc.pagina.inicio | 453 | |
dc.revista | Publications of the research institute for mathematical sciences | |
dc.rights | acceso restringido | |
dc.subject | Pauli operators | |
dc.subject | almost-periodic functions | |
dc.subject | ergodic operator families | |
dc.subject | zero modes | |
dc.subject | asymptotics of Dirichlet series | |
dc.title | Spectral Properties of 2D Pauli Operators with Almost-Periodic Electromagnetic Fields | |
dc.type | artículo | |
dc.volumen | 55 | |
sipa.index | WOS | |
sipa.trazabilidad | WOS;2025-01-12 |