Bi-parametric operator preconditioning
dc.contributor.author | Escapil-Inchauspe, Paul | |
dc.contributor.author | Jerez-Hanckes, Carlos | |
dc.date.accessioned | 2025-01-20T22:04:14Z | |
dc.date.available | 2025-01-20T22:04:14Z | |
dc.date.issued | 2021 | |
dc.description.abstract | We extend the operator preconditioning framework Hiptmair (2006) [10] to Petrov-Galerkin methods while accounting for parameter-dependent perturbations of both variational forms and their preconditioners, as occurs when performing numerical approximations. By considering different perturbation parameters for the original form and its preconditioner, our bi-parametric abstract setting leads to robust and controlled schemes. For Hilbert spaces, we derive exhaustive linear and super-linear convergence estimates for iterative solvers, such as h-independent convergence bounds, when preconditioning with low-accuracy or, equivalently, with highly compressed approximations. | |
dc.description.funder | Fondecyt Regular | |
dc.fuente.origen | WOS | |
dc.identifier.doi | 10.1016/j.camwa.2021.10.012 | |
dc.identifier.eissn | 1873-7668 | |
dc.identifier.issn | 0898-1221 | |
dc.identifier.uri | https://doi.org/10.1016/j.camwa.2021.10.012 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/94072 | |
dc.identifier.wosid | WOS:000721342700006 | |
dc.language.iso | en | |
dc.pagina.final | 232 | |
dc.pagina.inicio | 220 | |
dc.revista | Computers & mathematics with applications | |
dc.rights | acceso restringido | |
dc.subject | Operator preconditioning | |
dc.subject | Galerkin methods | |
dc.subject | Numerical approximation | |
dc.subject | Iterative linear solvers | |
dc.title | Bi-parametric operator preconditioning | |
dc.type | artículo | |
dc.volumen | 102 | |
sipa.index | WOS | |
sipa.trazabilidad | WOS;2025-01-12 |