Bi-parametric operator preconditioning

dc.contributor.authorEscapil-Inchauspe, Paul
dc.contributor.authorJerez-Hanckes, Carlos
dc.date.accessioned2025-01-20T22:04:14Z
dc.date.available2025-01-20T22:04:14Z
dc.date.issued2021
dc.description.abstractWe extend the operator preconditioning framework Hiptmair (2006) [10] to Petrov-Galerkin methods while accounting for parameter-dependent perturbations of both variational forms and their preconditioners, as occurs when performing numerical approximations. By considering different perturbation parameters for the original form and its preconditioner, our bi-parametric abstract setting leads to robust and controlled schemes. For Hilbert spaces, we derive exhaustive linear and super-linear convergence estimates for iterative solvers, such as h-independent convergence bounds, when preconditioning with low-accuracy or, equivalently, with highly compressed approximations.
dc.description.funderFondecyt Regular
dc.fuente.origenWOS
dc.identifier.doi10.1016/j.camwa.2021.10.012
dc.identifier.eissn1873-7668
dc.identifier.issn0898-1221
dc.identifier.urihttps://doi.org/10.1016/j.camwa.2021.10.012
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/94072
dc.identifier.wosidWOS:000721342700006
dc.language.isoen
dc.pagina.final232
dc.pagina.inicio220
dc.revistaComputers & mathematics with applications
dc.rightsacceso restringido
dc.subjectOperator preconditioning
dc.subjectGalerkin methods
dc.subjectNumerical approximation
dc.subjectIterative linear solvers
dc.titleBi-parametric operator preconditioning
dc.typeartículo
dc.volumen102
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files